Prawda

Sobota, 18 maja 2024 - 06:36

« Poprzedni Następny »


“Czarne tygrysy” w małym indyjskim rezerwacie sugerują losowy dryf genetyczny


Jerry A. Coyne 2021-10-26


Dwiema największymi siłami, które zmieniają częstotliwość wariantów genów w populacji, są dobór naturalny i dryf genetyczny. Dobór naturalny jest szeroko znany, ale ludzie, którzy nie zajmują się zawodowo ewolucją, nie doceniają dryfu genetycznego. Jest to po prostu zmiana częstotliwości wariantów genów spowodowana wyłącznie przez przypadek: losowe sortowanie i występowanie wariantów z pokolenia na pokolenie nie z powodu jakiejś wewnętrznej korzyści lub negatywnego wpływu danych genów na reprodukcję.

Ucząc studentów o dryfie genetycznym często robi się ćwiczenia polegające na tworzeniu populacji przez wybieranie kolorowych kulek z woreczka. Jeśli w woreczku jest dziesięć kulek, pięć czerwonych i pięć niebieskich (reprezentujące populację z równą częstotliwością dwóch wariantów genu), i wybierają pięć, by były genami następnego pokolenia (wielkość populacji musi być skończona), to mogą wziąć trzy czerwone i dwie niebieskie kulki. Następnie tworzymy nowy woreczek z nowymi częstotliwościami populacji – 6 czerwonych kulek i 4 niebieskie. Częstotliwość czerwonego wariantu podniosła się z  50% do 60%. Powtórz to wiele razy, a zobaczysz, że częstotliwość kulek zmienia każde pokolenie wyłącznie z powodu przypadku. Po wystarczająco długim czasie wszystkie kulki będą tego samego koloru i wtedy dalsza zmiana nie jest już możliwa (to nazywa się „fiksacją”). Tak więc widzimy zachodzenie zmiany częstotliwości występowania genu (co większość z nas definiuje jako ewolucję), ale nie było to wynikiem doboru naturalnego, nie było świadomego wybierania kulek jednego koloru. Często dawałem moim studentom przykłady zmiany częstotliwości genu w jednej populacji i mówiłem: “co zrobilibyście, by ustalić, czy jest tak z powodu doboru naturalnego?” (Odpowiedź: załóż replikujące się populacje. Dobór zawsze napędza ten sam wariant do wysokiej częstotliwości, podczas gdy przy dryfie widzimy rozmaite i odwrotne zmiany w replikujących się populacjach.)


Im mniejsza populacja, tym większe szanse, że zajdzie zmiana w proporcji genów (tj. tym silniejszy “dryf genetyczny”). Faktycznie, jeśli populacja jest wystarczająco mała, dryf genetyczny może przezwyciężyć dobór naturalny, podnosząc warianty, które zmniejszają reprodukcję. Kiedy widzisz małą populację z wysoką częstotliwością dziwnych lub wręcz szkodliwych  wariantów, możesz zacząć podejrzewać działanie dryfu. Chów wsobny można uważać za rodzaj dryfu genetycznego w małej populacji i dlatego widzimy wysoką częstotliwość chorób genetycznych w małych populacjach ludzi (tutaj jest kilka przykładów u Amiszów).


Artykuł z najnowszego numeru “Proceedings of the National Academy of Sciences” pokazuje prawdopodobny przypadek dryfu genetycznego, który powoduje większe i ciemniejsze prążki u tygrysów w Indiach. Można przeczytać go przez kliknięcie na link pod zrzutem z ekranu poniżej lub w pdf tutaj.


Jest także komentarz PNAS o tym artykule, jeśli chcesz skrót. Kliknij na link pod zrzutem z ekranu poniżej lub weź pdf tutaj.


Indie są domem dla dwóch trzecich tygrysów na świecie i naturalne populacje są często podzielone z powodu zniszczenia habitatu i mogą być także bardzo małe z powodu intensywnych polowań w przeszłości. Badanie indyjskich tygrysów w rezerwatach przyrody i zoo pokazało, że jeden teren, Rezerwat Tygrysów Similipal w Odisha, ma wysoki odsetek tygrysów z ciemnymi prążkami, nazywanych „czarnymi tygrysami”. Nie jest to tym samym, co melanizm, jaki widzimy u lampartów i jaguarów – oba nazywane „czarnymi panterami, choć są to różne gatunki. Poniżej jest czarny tygrys (po prawej) w porównaniu do „normalnego” tygrysa.



Poniżej jest mapa, która pokazuje, jak autorzy badali tygrysy. Kółka są naturalnymi populacjami, a kwadraty to zoo lub zamknięte rezerwaty. Wielkość kół i kwadratów reprezentuje wielkość próby tygrysów. Dodałem strzałkę, która pokazuje Rezerwat Tygrysów Similipal.


Czarne tygrysy znajdują się tylko w Similipal lub w małych rezerwatach i zoo. Diagramy kołowe pokazują częstotliwość osobników, które mają zero (żółte), jeden (pomarańczowe) lub dwie kopie zmutowanego genu, który powoduje niezwykły wzór (czarny kolor). Diagram poniżej pokazuje, że czarne tygrysy “m/m” w stanie dzikim znajdują się tylko w Similipal, ale są także w dwóch zoo, gdzie prawdopodobnie zostały wybrane do hodowli, ponieważ są niezwykłe. Ponadto stwierdzono, że wszystkie czarne tygrysy w zoo miały co najmniej jednego przodka z Similipal.


Z jakiegoś powodu ta mała, dzika populacja ma wysoką częstotliwość czarnego wariantu (allelu). (Jest co najmniej 12 dorosłych tygrysów w Simlipal, a nie może ich być dużo więcej, bo strażnicy leśni potrafią je identyfikować.)


(From paper): Fig. 2. Distribution of the genotyped individuals. A total of 428 individuals were genotyped at the Taqpep c.1360C > T mutation site. Wild tigers are shown with a circular marker, and captive tigers (NKB, AAC, and Mysore Zoo) are shown with a square marker. The size of the square/circle indicates the number of individuals genotyped from a given area. In addition to the 399 Bengal tigers shown on the map, we genotyped 12 Amur, 12 Malayan, and five Sumatran tigers from Armstrong et al. (40) These are not shown on the map to allow the figure to focus on sampling within India. The fraction of the three genotypes in samples from the three populations in which pseudomelanistic tigers are present is shown with the pie chart. Similipal is the only population of wild tigers to have pseudomelanistic tigers, and the other two populations are of captive tigers. All wild tigers were homozygous for the wild-type allele at Taqpep c.1360C > T site except for Similipal individuals.
(From paper): Fig. 2. Distribution of the genotyped individuals. A total of 428 individuals were genotyped at the Taqpep c.1360C > T mutation site. Wild tigers are shown with a circular marker, and captive tigers (NKB, AAC, and Mysore Zoo) are shown with a square marker. The size of the square/circle indicates the number of individuals genotyped from a given area. In addition to the 399 Bengal tigers shown on the map, we genotyped 12 Amur, 12 Malayan, and five Sumatran tigers from Armstrong et al. (40) These are not shown on the map to allow the figure to focus on sampling within India. The fraction of the three genotypes in samples from the three populations in which pseudomelanistic tigers are present is shown with the pie chart. Similipal is the only population of wild tigers to have pseudomelanistic tigers, and the other two populations are of captive tigers. All wild tigers were homozygous for the wild-type allele at Taqpep c.1360C > T site except for Similipal individuals.

Badaczom łatwo było zdobyć próbki DNA tygrysów, które są w niewoli, ale zdobycie DNA dzikich tygrysów jest trudne. Tropili tygrysy i zbierali ich odchody, ślinę z zabitej zwierzyny lub pozostawioną sierść tygrysów. Sekwencjonowanie może pokazać natychmiast, czy masz DNA tygrysa, czy czegoś innego. Nie całkiem wiem, jak udało im się rozróżniać ślady lub zwierzynę indywidualnych tygrysów, ale różnice DNA z różnych próbek informują, z iloma tygrysami ma się do czynienia. 

Jeśli rzeczywiście tylko jeden gen powoduje czerń prążków, to zachowuje się jak gen recesywny; to jest, tygrys musi mieć dwie kopie zmutowanego genu, żeby być czarnym tygrysem. Bez żadnej kopi lub z jedną kopią w parze z “normalnym” allelem, wygląda jak normalny tygrys. Tutaj jest genealogia z zapisów hodowlanych tygrysów w niewoli. Kolor pomarańczowy reprezentuje normalnie ubarwionego tygrysa, a czarny reprezentuje „czarne tygrysy”. Kółka reprezentują samice, a kwadraty samców.

Widać, że dwa pomarańczowe tygrysy mogą dać czarnego; w tych wypadkach każdy z pomarańczowych rodziców ma jedną kopię recesywnego, “czarnego” allelu; są “heterozygotami”.  To jeszcze nie jest absolutnie pewien dowód na pojedynczy gen recesywny; wzmocniłoby argument, gdyby skojarzyć dwa czarne tygrysy i całe ich potomstwo byłoby czarne, bo to przewiduje się przy recesywnym genie.


From paper: (From paper): (B) The pedigree of the captive tigers sampled for this study. The individual labels shown in red are for the tigers whose genome was sequenced for this study (NKB17 is not shown in the pedigree). The genotype values are indicated for the individuals sampled and successfully genotyped at the mutation site (+/+ for wild-type homozygote, +/m for heterozygote, m/m for mutant homozygote, and x/x for missing genotype). Squares represent males, and circles represent females. Pseudomelanistic phenotype is represented in solid black shapes. The dashed line shows the presence of the same individual at two spots in the pedigree.
From paper: (From paper): (B) The pedigree of the captive tigers sampled for this study. The individual labels shown in red are for the tigers whose genome was sequenced for this study (NKB17 is not shown in the pedigree). The genotype values are indicated for the individuals sampled and successfully genotyped at the mutation site (+/+ for wild-type homozygote, +/m for heterozygote, m/m for mutant homozygote, and x/x for missing genotype). Squares represent males, and circles represent females. Pseudomelanistic phenotype is represented in solid black shapes. The dashed line shows the presence of the same individual at two spots in the pedigree.

Skąd jednak wiemy, że czarny wzór jest powodowany przez pojedynczy gen? Autorzy zsekwencjonowali cały genom i znaleźli jeden gen, którego warianty całkowicie zgadzały się z kolorem: jeśli osobnik miał dwie zmutowane kopie, których sekwencja DNA eliminuje tworzenie się białka kodowanego przez ten gen, był czarny. Jeśli jednak miał tylko jedną kopię, był normalnie ubarwiony. Ten gen o nazwie Taqpep jest wskazywany jako odpowiedzialny za ciemne odmiany u innych kotów (patrz poniżej). Pełna nazwa brzmi: “transbłonowa aminopeptydaza Q”, a zmutowana postać, która w ogóle nie działa, nazywa się Taqpep pH454Y. Nie jesteśmy pewni, jak działa “normalny” gen w tworzeniu wzorów: enzym bierze udział w rozkładaniu innych białek, a także pomaga przy tworzeniu łożyska u ludzi! 


Wiemy natomiast, że inne zmutowane kotowate z ciemniejszymi i szerszymi prążkami także mają mutację genu Taqpep. Poniżej jest ilustracja z artykułu pokazująca homozygotyczne mutacje tego genu u tygrysa, domowego kota i geparda. U gepardów daje ciemne plamy zamiast cętek (patrz poniżej). Każda z tych trzech mutacji Taqpep jest inna, więc mamy tutaj przykład “konwergentnej ewolucji”, różne gatunki dotarły do podobnego wyglądu przez niezależne mutacje. Te mutacje musiały zdarzyć się po oddzieleniu się tych trzech kotów od wspólnego przodka, który dla wszystkich trzech żył 11,5 miliona lat temu, a dla domowego kota i geparda 8,8 milionów lat temu.


(From paper): Fig. 1. Convergent evolution of broadened stripes/spots in cat species. The phenotype has arisen independently in the domestic cat (Felis catus), cheetah (Acinonyx jubatus), and tiger (Panthera tigris). (A) The phylogeny on the left depicts the relationships among the three species; numbers above branches indicate the divergence times (in million years ago) among their respective lineages; a timescale is shown at the bottom (tree and node dates are from ref. 17). In each of these species, the phenotype is caused by unique mutations in the Taqpep gene, whose positions in the encoded protein are indicated below the respective branch. Coat pattern images are modified from the photos provided in the original articles: ref. 10 for domestic cat and cheetah; ref. 8 for tiger. (B) Schematic of the Taqpep protein indicating the positions of the five pattern-altering mutations shown in A (color coded per species).
(From paper): Fig. 1. Convergent evolution of broadened stripes/spots in cat species. The phenotype has arisen independently in the domestic cat (Felis catus), cheetah (Acinonyx jubatus), and tiger (Panthera tigris). (A) The phylogeny on the left depicts the relationships among the three species; numbers above branches indicate the divergence times (in million years ago) among their respective lineages; a timescale is shown at the bottom (tree and node dates are from ref. 17). In each of these species, the phenotype is caused by unique mutations in the Taqpep gene, whose positions in the encoded protein are indicated below the respective branch. Coat pattern images are modified from the photos provided in the original articles: ref. 10 for domestic cat and cheetah; ref. 8 for tiger. (B) Schematic of the Taqpep protein indicating the positions of the five pattern-altering mutations shown in A (color coded per species).

Poniżej “królewski” gepard (po prawej) obok normalnego geparda:



Skąd wzięły się czarne tygrysy w Similipal? Biorąc pod uwagę, że ten gen jest rzadki poza zoo i że populacja w Similipal jest mała, prawdopodobnym wyjaśnieniem jest dryf genetyczny. Mutacja mogła być “neutralna” tj., mogła nie dawać ani korzyści, ani nie być szkodliwa z punktu widzenia reprodukcji w porównaniu do „normalnych tygrysów”, a nawet mogła być w niewielkim stopniu szkodliwa. Gdyby ciemna postać była selekcyjnie korzystna, widzielibyśmy w Indiach wiele takich populacji, bo zmutowany gen stawałby się częstszy. (Dalsza analiza genomu nie pokazuje oznak, że gen zwiększył częstotliwość z powodu doboru naturalnego, ale nie można tego powiedzieć z całkowitą pewnością.)  


Autorzy wykonali symulację z założeniem, że populacja z Similipal została izolowana od innych populacji 10-50 tygrysich populacji temu i doszli do wniosku, że populację prawdopodobnie założyło parę tygrysów: dwa lub trzy. W Similipal frekwencja “ciemnej” postaci genu wynosi około 58%, podczas gdy jasna postać genu wynosi około 42%. Gdyby krzyżowania były losowe, oczekiwalibyśmy (0.58)² ciemnych tygrysów lub około 34% wszystkich tygrysów. Jak widać na diagramie kołowym dla Similipal powyżej, jest to dość bliskie faktycznemu rozkładowi.   


To zatem byłby dobry przykład podczas nauczania o dryfie genetycznym. Trudno jest dobrze o tym nauczać, ponieważ wymaga to matematyki, czego studenci nie lubią. Ucząc zawsze potrzeba przykładów i możemy zademonstrować dryf w laboratorium używając woreczków z kulkami albo symulacji komputerowej. Lepiej jest jednak mieć przykłady z przyrody i tego przykładu użyłbym, ponieważ spełnia warunki dryfu i nie widać doboru faworyzującego czarny gen, a wiadomo, że populacja jest mała i izolowana.

______________

Sagar, V. Christopher B. Kaelin, Meghana Natesh, P. Anuradha Reddy, Rajesh K. Mohapatra, Himanshu Chhattani, Prachi Thatte, Srinivas Vaidyanathan, Suvankar Biswas, Supriya Bhatt, Shashi Paul, Yadavendradev V. Jhala, Mayank, M. Verma Bivash Pandav, Samrat Mondol, Gregory S. Barsh, Debabrata Swain, and Uma Ramakrishnan. 2021. High frequency of an otherwise rare phenotype in a small and isolated tiger population Proceedings of the National Academy of Sciences 118 (39): e2025273118; DOI: 10.1073/pnas.2025273118

 

”Black tigers” in a small Indian reserve suggest random genetic drift

Why Evolution Is True, 17 października 2021

Tłumaczenie: Małgorzata Koraszewska  



Jerry A. Coyne

Emerytowany profesor na wydziale ekologii i ewolucji University of Chicago, jego książka "Why Evolution is True" (Polskie wydanie: "Ewolucja jest faktem", Prószyński i Ska, 2009r.) została przełożona na kilkanaście języków, a przez Richarda Dawkinsa jest oceniana jako najlepsza książka o ewolucji.  Jerry Coyne jest jednym z najlepszych na świecie specjalistów od specjacji, rozdzielania się gatunków. Jest również jednym ze znanych "nowych ateistów" i autorem książki "Faith vs Fakt". Jest wielkim miłośnikiem kotów i osobistym przyjacielem redaktor naczelnej.
 

Skomentuj Tipsa en vn Wydrukuj






Nauka

Znalezionych 1479 artykuły.

Tytuł   Autor   Opublikowany

Nie – żadne chi nie istnieje   Novella   2020-12-21
Moc nauki dostarczyła najlepszej możliwej wiadomości w tym koszmarnym roku   Ridley   2020-12-18
Szczątkowa cecha ptaków, która mogła być funkcjonalna u przodków: zdalne wyczuwanie drgań dziobem (nadal czynne u kiwi)   Coyne   2020-12-16
Paradoks wielce niedoskonałego dobra   Koraszewski   2020-12-11
Nasiona roślin ewoluują, by upodobnić się odchodów antylopy, a oszukane żuki gnojowe odtaczają i zagrzebują nasiona   Coyne   2020-12-10
AI – asystent lekarza   Novella   2020-12-09
Czy problem zwijania białka został rozwiązany?   Coyne   2020-12-05
„Gryzoń skunksowy”, który żuje trujące rośliny i wypluwa truciznę na swoje futro   Coyne   2020-12-02
Intensywne zbieranie leczniczej rośliny przez ludzi prowadzi do ewolucji nowych kolorów liści i kwiatów   Coyne   2020-11-28
Jak ewoluuuje altruizm?   Coyne   2020-11-25
Filozof zainfekowany efektem potwierdzenia wyjaśnia, dlaczego ewolucja dowodzi Boga   Coyne   2020-11-23
Według nowych badań są cztery gatunki pingwinów białobrewych, a nie tylko jeden   Coyne   2020-11-19
Gra w łajdactwo, by zrozumieć łajdaków   Novella   2020-11-18
Ewolucja psów   Novella   2020-11-09
Genomowa i ewolucyjna analiza wymarłego kota szablozębnego   Coyne   2020-10-31
Zakład Simon-Ehrlich po 40 latach   Gale L. Pooley   2020-10-23
Używające narzędzi mrówki budują struktury, by spijać roztwór cukru w pojemnikach, nie topiąc się   Coyne   2020-10-22
Czego pandemia nauczyła nas o nauce?   Ridley   2020-10-19
Przeddarwinowscy “darwiniści”   Berry   2020-10-16
Covid 19 może przejmować kontrolę nad receptorami bólu, uśmierzając ból i podnosząc szerzenie się choroby: możliwy rezultat doboru naturalnego   Coyne   2020-10-15
Znowu wrzawa, że “teoria ewolucji wywrócona”, ale jak zwykle, robią z igły widły   Coyne   2020-10-13
Intelektualna pustka numeru “New Scientist” o ewolucji: 4. Rzekome znaczenie dryfu genetycznego w ewolucji   Coyne   2020-10-09
Chromosomy Y ludzi, neandertalczyków i denisowian   Novella   2020-10-08
Intelektualna pustka numeru “New Scientist” o ewolucji: 3. Rzekome znaczenie epigenetyki w ewolucji   Coyne   2020-10-07
Intelektualna pustka numeru “New Scientist” o ewolucji: 2. Rzekome nieistnienie gatunków   Coyne   2020-10-05
Intelektualna pustka numeru “New Scientist” o ewolucji: 1. Genetyczna plastyczność    Coyne   2020-10-03
“New Scientist”: Darwin jednak miał rację    Coyne   2020-10-01
Uprawy GMO i wzrost plonów   Novella   2020-09-28
Książka o psychologii ewolucyjnej, która pokazuje wartość tej dziedziny – ale nie wartość memów   Coyne   2020-09-22
Przyjemności seksu i jagód   Ridley   2020-09-18
Czy można falsyfikować naukowe teorie? Naukowiec odpowiada, że “nie”   Coyne   2020-09-12
Naukowe pismo “Nature” przystaje do Przebudzonych twierdząc, że zarówno płeć, jak gender są niebinarne   Coyne   2020-09-09
Wybór ostatecznej wolności   Witkowski   2020-09-07
Polio zlikwidowane w Afryce   Novella   2020-09-05
Czy wyrazy ludzkiej twarzy są uniwersalne w okazywaniu emocji?   Coyne   2020-09-02
Barwny erudyta J.B.S. Haldane   Coyne   2020-08-28
Modelowanie zbijania się pingwinów cesarskich w gromadę: każdy dostaje równie dużo ciepła   Coyne   2020-08-25
Jak algorytmy wpływają na twoje życie   Novella   2020-08-24
Z okazji dziewięćdziesiątych urodzin Thomasa Sowella   Jacoby   2020-08-22
Prawdziwie długa szyja: 6-metrowy wodny gad z triasu z szyją długości 2,7 metra   Coyne   2020-08-19
Wątrobiane duszki   Novella   2020-08-17
Rozrzedzanie krwi bez groźby krwawienia   Novella   2020-08-14
Nowy raport: Bakteria po stu milionach lat nadal żywa!   Coyne   2020-08-08
Modlitwa to nie jest lekarstwo   Nowella   2020-08-07
Maleńki, 10-centymetrowy dinosaur, który zjadał owady   Coyne   2020-08-06
Piękny skoczek, który upodabnia się do mrówki   Coyne   2020-08-03
Urodziny Rosalind Franklin!   Cobb   2020-07-31
Kondor wielki: ptak, który rzadko kiedy macha skrzydłami   Coyne   2020-07-28
Czy ludzie byli w Nowym Świecie ponad 30 tysięcy lat temu?   Coyne   2020-07-26
Oszaleć na punkcie nietoperzy w czasach korony i politykierstwa   Collins   2020-07-25
Dwa gatunki dały zdolną do życia hybrydę, mimo że rozeszły się 150 milionów lat temu   Coyne   2020-07-23
Niccolo Tartaglia jego tajemnica   Jacoby   2020-07-20
Akcja afirmatywna w wieloetnicznym narodzie   Hyams   2020-07-17
Dekolonizacja ewolucji (i Darwina) była nieunikniona   Coyne   2020-07-15
Filtr mózgu (czyli czego nie widzimy)   Novella   2020-07-14
Homeopatia jest bezwartościowa a czasami szkodliwa   Novella   2020-07-10
Pięć błędnych wyobrażeń o ewolucji: jedno jest wątpliwe, jedno niesłuszne   Coyne   2020-07-08
Wiecznie kurczący się tranzystor i wynalezienie Google   Ridley   2020-07-06
Postmodernizm: filozofia, która stoi za naszymi wojnami kulturowymi i postępującym nihilizmem   Hill   2020-07-02
Bodźce do innowacji w końcu pokonają COVID-19   Ridley   2020-06-27
Maleńkie stworzenia morskie budują olbrzymie, fantastyczne domy, by chronić się i zdobywać pokarm   Coyne   2020-06-25
Rośliny uprawne z edytowanym genomem pomagają farmerom i środowisku   Ridley   2020-06-20
Czy klucz do COVID można znaleźć w rosyjskiej pandemii?   Ridley   2020-06-18
Skąd więc wziął się ten wirus?   Ridley   2020-06-16
Nowe dane o tym, jak działają grzyby „mrówek zombie”   Coyne   2020-06-15
Czy brytyjski naukowy establishment popełnił największy błąd w historii?   Ridley   2020-06-13
Błysk światła w mroku   Sheagren   2020-06-12
Poczucie pewności napędza efekt potwierdzenia   Novella   2020-06-08
Czy możemy zobaczyć osobowość?   Novella   2020-06-05
Rozwiązanie dla obecnego kryzysu   Ridley   2020-06-02
Lokalizacja funkcji wykonawczych   Novella   2020-05-30
Przestańcie wierzyć w naukę   Greenfield   2020-05-28
Ewolucyjne korzenie sztuki   Koraszewski   2020-05-27
Innowacji nie można wymusić, ale można je zdławić   Ridley   2020-05-26
Stymulowanie kory wzrokowej   Novella   2020-05-23
Pora na telemedycynę   Novella   2020-05-19
Czy mrożącą krew w żyłach prawdą jest, że decyzja o zamknięciu społeczeństwa opierała się na luźnych matematycznych spekulacjach?   Ridley   2020-05-15
MMR jest bezpieczna i skuteczna   Novella   2020-05-14
Odporność stada na fakty   Koraszewski   2020-05-13
O COVID wiemy wszystko – i nie wiemy niczego   Ridley   2020-05-12
Nanotechnologia zastosowana do leczenia choroby Alzheimera   Novella   2020-05-11
COVID-19 – To są szkody   Novella   2020-05-05
Nadmiar teorii wszystkiego   Koraszewski   2020-05-04
Zawodnicy – i trudności – w wyścigu do wyleczenia COVID   Ridley   2020-04-30
Psychologia sprzeciwu wobec szczepień   Novella   2020-04-25
Prowokator czy prowokowany?   Witkowski   2020-04-24
Nauka on-line jest skuteczna   Novella   2020-04-23
Mądrość w pułapce autorytetu   Witkowski   2020-04-18
Znaleziono najstarszego “bilaterian”: odkryto podobne do robaka stworzenie wraz z jego skamieniałymi śladami   Coyne   2020-04-16
Nietoperze i pandemia   Ridley   2020-04-14
Pandemia ludzkiej głupoty   Novella   2020-04-12
W miarę postępu badań natura naszego wroga staje się coraz wyraźniejsza   Ridley   2020-04-04
Wzmacnianie układu odpornościowego podczas pandemii   Novella   2020-04-02
Dlaczego ten wirus inaczej dotyka pokolenia?   Ridley   2020-03-30
Czaszka maleńkiego dinozaura/ptaka znaleziona w bursztynie   Coyne   2020-03-27
Szczepionka na koronawirusa nie przybędzie szybko   Ridley   2020-03-25
Niebawem dowiemy się jak solidna jest nasza cywilizacja   Ridley   2020-03-23
Żywotność wirusa Covid-19 na różnych powierzchniach (rada: używaj rękawiczek, kiedy odbierasz paczki i nie otwieraj ich przez 24 godziny)   Coyne   2020-03-21
Dzień był krótszy 70 milionów lat temu   Novella   2020-03-20
Jak często powstają ptasie hybrydy?   Coyne   2020-03-18

« Poprzednia strona  Następna strona »
Polecane
artykuły

Lekarze bez Granic


Wojna w Ukrainie


Krytycy Izraela


Walka z malarią


Przedwyborcza kampania


Nowy ateizm


Rzeczywiste łamanie


Jest lepiej


Aburd


Rasy - konstrukt


Zielone energie


Zmiana klimatu


Pogrzebać złudzenia Oslo


Kilka poważnych...


Przeciwko autentyczności


Nowy ateizm


Lomborg


„Choroba” przywrócona przez Putina


„Przebudzeni”


Pod sztandarem


Wielki przekret


Łamanie praw człowieka


Jason Hill


Dlaczego BIden


Korzenie kryzysu energetycznego



Obietnica



Pytanie bez odpowiedzi



Bohaterzy chińskiego narodu



Naukowcy Unii Europejskiej



Teoria Rasy



Przekupieni



Heretycki impuls



Nie klanial



Cervantes



Wojaki Chrystusa


Listy z naszego sadu
Redaktor naczelny:   Hili
Webmaster:   Andrzej Koraszewski
Współpracownicy:   Jacek, , Małgorzata, Andrzej, Henryk