Prawda

Piątek, 26 kwietnia 2024 - 13:39

« Poprzedni Następny »


Obrona śmieciowego DNA


Carl Zimmer 2014-05-17


Genomy są jak księgi życia. Do niedawna jednak ich okładki były zamknięte. Teraz wreszcie możemy otworzyć książkę i obejrzeć strona za stroną. Nasz zrozumienie tego, co widzimy, jest jednak skromne. Nadal nie jesteśmy pewni, jak duża część naszego genomu koduje informacje, które są ważne dla naszego przeżycia, a jak dużo jest po prostu posiekanym wypełniaczem.

Dzisiaj jest dobry dzień, by zanurzyć się w debatę o tym, z czego składa się genom, dzięki publikacji ciekawego komentarza Alexa Palazzo i Ryana Gregory’ego w „PLOS Genetics”. Nosi tytuł: “The Case for Junk DNA”.


Debata nad genomem może przyprawić o zawrót głowy. Odkryłem, że najlepszym na to lekarstwem jest trochę historii. Ta historia zaczyna się na początki lat 1900.


Genetycy wiedzieli wówczas, że posiadamy geny – czynniki przekazywane przez rodziców potomstwu, które mają wpływ na nasze organizmy – ale nie wiedzieli, z czego zrobione są geny.


Zaczęło się to zmieniać w latach 1950. Naukowcy zrozumieli, że geny zbudowane są z DNA, a potem doszli do tego, jak geny kształtują naszą stronę biologiczną.


Nasz DNA jest łańcuchem jednostek zwanych nukleotydami. Odczytuję je na odcinku DNA – będącym genem – i budują cząsteczkę o nazwie RNA z  komplementarną sekwencją zasad. Komórka używa następnie RNA jako przewodnika do budowania białka. Nasze organizmy zawierają wiele różnych białek, które nadają im strukturę i wykonują zadania, takie jak trawienie żywności.


Ale w latach 1950 naukowcy zaczęli odkrywać odcinki DNA poza regionami kodującymi białka, które także są ważne. Te tak zwane elementy regulatorowe działają jak przełączniki dla kodujących białka genów. Białko, przyczepiające się do jednego z tych przełączników, może skłonić komórkę do wyprodukowania dużej ilości białek z danego genu. Albo też może całkowicie zamknąć ten gen.


Równocześnie naukowcy znajdowali także w genomie odcinki DNA, które wydawały się nie być ani kodującymi białka genami, ani elementami regulatorowymi. Na przykład w latach 1960. Roy Britten i David Kohne znaleźli setki tysięcy powtarzających się sekwencji DNA, z których każdy okazał się mieć tylko kilkaset zasad. Wiele z tych powtarzających się sekwencji było produktami wirusopodobnych odcinków DNA. Te kawałki „samolubnego DNA” tworzyły kopie samych siebie, które wstawiały z powrotem do genomu. Następnie mutacje redukowały to do bezczynnych fragmentów.


Inni naukowcy znaleźli dodatkowe kopie genów, które doznały mutacji niepozwalającej im na tworzenie białek – stały się znane pod nazwą pseudogenów.


Wiemy teraz, że ludzki genom zawiera około 20 tysięcy kodujących białka genów. Może to brzmieć jak bardzo dużo materiału genetycznego. Ale stanowi to zaledwie 2 procent genomu. Niektóre rośliny dochodzą do większych skrajności. Podczas gdy my mamy około 3,2 miliarda par zasad w naszym genomie, cebule mają 16 miliardów, z których większość to powtarzające się sekwencje i wirusopodobny DNA.


Reszta genomu stała się dla naukowców tajemniczą puszczą. Wybierali się na wyprawy, żeby mapować te niekodujące regiony i próbowali zrozumieć, z czego one się składają.


Okazało się, że niektóre segmenty DNA miały funkcje, chociaż nie kodowały białek ani nie służyły jako przełączniki. Na przykład, czasami nasze komórki wytwarzają cząsteczki RNA, które nie służą po prostu jako matryca dla białek. Zamiast tego mają własne zadania, takie jak wyczuwanie substancji chemicznych w komórce. A więc te odcinki DNA także uważane są za geny – tylko geny niekodujące białek.


Wraz z badaniem genomu pojawiło się wiele nazw, a niektóre z nich są używane w dezorientujący, a czasami beztroski sposób. „Niekodujący DNA” stał się skrótem dla DNA, które nie koduje białek. Ale niekodujący DNA może nadal pełnić funkcję, taką jak wyłączanie genów lub produkowanie użytecznych cząsteczek RNA.


Naukowcy zaczęli także mówić o “śmieciowym DNA”. Różni naukowcy używali tego terminu do określania różnych rzeczy. Genetyk japoński Susumu Ohno użył tego terminu, kiedy rozwijał teorię tego, jak DNA ulega mutacjom. Ohno wyobrażał sobie przypadkowo duplikowane geny kodujące białka. Następnie pojawiały się mutacje w nowych kopiech tych genów.  W kilku wypadkach mutacja dawała nowym kopiom genów nową funkcję. W większości wypadków jednak, po prostu zabijała te geny. O tych bezużytecznych, dodatkowych kopiach genów mówił jako o śmieciowym DNA. Inni ludzie używali tego terminu szerzej, do każdego kawałka DNA, który nie miał funkcji.


A potem – jak  przy przecinaniu się strumieni protonów w Pogromcach duchów – śmieciowy DNA i niekodujący DNA zmieszały się. Czasami naukowcy odkrywali odcinek niekodującego DNA, który miał funkcję. Mogli wyciąć z jajeczka ten segment DNA i stwierdzali, że nie mogło się rozwijać. BUM! – natychmiast pojawiał się komunikat prasowy oświadczający, że niekodujący DNA został zlekceważony jako śmieć, ale proszę!, niekodujący DNA potrafi jednak coś zrobić.


Biorąc pod uwagę, że element regulatorowe zostały odkryte w latach 1950. (odkrycie nagrodzono Nagrodą Nobla) jest to zwyczajnie nielogiczne.


Niemniej pozostaje warte zadania pytanie: Jak duża część genomu ma funkcję? Ile z genomu jest śmieciem?


Dla Brittena i Kohne’a myśl, że powtarzający się DNA jest bezużyteczny, była “odrażająca”. Na pozór z powodów estetycznych woleli myśl, że ma funkcje, które jeszcze nie zostały odkryte.


Inni jednak twierdzili, że powtarzający się DNA (i pseudogeny, i tak dalej) są tylko śmieciami – resztkami niepełnosprawnego materiału genetycznego, który przenosimy przez pokolenia. Gdyby większość genomu była funkcjonalna, to trudno zrozumieć, dlaczego potrzeba pięciokrotnie więcej funkcjonalnego DNA dla zrobienia cebuli niż człowieka – lub wyjaśnić olbrzymi rozrzut wielkości genomów:


Z Palazzo i Gregory, PLOS Genetics 2014. Rozmiar genomu podany w tysiącach zasad. Gwiazdka oznacza ludzi.
Z Palazzo i Gregory, PLOS Genetics 2014. Rozmiar genomu podany w tysiącach zasad. Gwiazdka oznacza ludzi.

W ostatnich latach konsorcjum naukowców przeprowadziło projekt o nazwie Encyklopedia Elementów DNA (w skrócie ENCODE), żeby sklasyfikować wszystkie części genomu. Żeby zobaczyć, czy niekodujący DNA jest funkcjonalny, sprawdzali białka, które były do niego przyczepione – być może włączające elementy regulatorowe. Znaleźli ich dużo.


“Te dane umożliwiły nam przypisanie funkcji biochemicznych 80% genomu, szczególnie poza dobrze zbadanymi regionami kodującymi białka” - poinformowali.


Pismo “Science” przełożyło ten wniosek na tytuł: “ENCODE Project writes eulogy for junk DNA.” [Projekt ENCODE pisze epitafium dla śmieciowego DNA]


Wielu obrońców śmieci zaatakowało ten wniosek – lub, dokładniej mówiąc, to jak badania przełożyły się na komunikat prasowy, a potem na artykuły w gazetach. W nowej recenzji Palazzo i Gregory przedstawili kilka głównych zastrzeżeń.


Na przykład, tylko to, że białka chwytają się kawałka DNA, nie znaczy, że w pobliżu jest gen, który robi coś pożytecznego. Ten odcinek może po prostu mieć przypadkiem właściwą sekwencję, by skłonić białko do przyczepienia się do niego.


A nawet jeśli z fragmentu DNA powstaje RNA, to RNA może nie mieć żadnej funkcji. Komórka może przypadkowo wytworzyć cząsteczki RNA, które następnie tnie na kawałki.


Gdybym miał zgadywać, dlaczego Britten i Kohne uważają śmieciowy DNA za odrażający, to prawdopodobnie ma to coś wspólnego z ewolucją. Darwin pokazał, jak dobór naturalny może przekształcić populację i jak, po milionach lat, może dawać adaptacje. W latach 1900. genetycy zamienili jego koncepcję w nowoczesną teorię. Geny, które podnosiły możliwość rozmnażania się, mogły stać się częstsze, podczas gdy te, które tego nie robiły, mogły być wyeliminowane z populacji. Można by spodziewać się, że dobór naturalny pozostawi genom w większości wypełniony w pełni funkcjonalnym materiałem.


Palazzo i Gregory natomiast argumentują, że ewolucja powinna produkować śmieci. Powód związany jest z faktem, że w pewnych sytuacjach dobór naturalny może być dość słaby. Im mniejsza populacja, tym mniej skuteczny jest dobór naturalny w faworyzowaniu dobroczynnych mutacji. W małej populacji mutacja rozprzestrzenia się, nawet jeśli nie jest dobroczynna. A w porównaniu do bakterii populacja ludzka jest bardzo mała. (technicznie mówiąc jej „efektywna wielkość populacji” jest mała – przeczytaj link, gdzie jest wyjaśnienie różnicy). Kiedy w naszym genomie nabudowuje się niefunkcjonalny DNA, doborowi naturalnemu jest trudniej się go pozbyć, niż gdybyśmy byli bakterią.


Podczas gdy śmieci są spodziewane, genom wolny od śmieci nie jest. Palazzo i Gregory opierają to twierdzenie na koncepcie o wzbudzającej respekt nazwie krach mutacyjny.


A tak to działa. Powiedzmy, że rozmnaża się populacja żab. Za każdym razem, kiedy powstaje nowa kijanka, nabywa ona pewną liczbę mutacji. Kilka z tych mutacji może być dobroczynnych. Reszta będzie neutralna lub szkodliwa. Jeśli mutacje szkodliwe powstają w tempie zbyt szybkim, by wyplenił je dobór naturalny, zaczynają one gromadzić się w genomie. Populacja staje się ogólnie bardziej chora i ma mniej potomstwa. W końcu mutacje doprowadzą do wymarcia całej populacji.


Krach mutacyjny ustanawia górną granice tego, ile genów może mieć organizm. Jeśli żaba ma 10 tysięcy genów, to jest to 10 tysięcy potencjalnych miejsc, gdzie mogą pojawić się szkodliwe mutacje. Jeśli żaba ma 100 tysięcy genów, to ma dziesięć razy więcej takich miejsc.


Oszacowania ludzkich mutacji sugerują, że gdzieś między 70 a 150 mutacji genom pojawia się w genomie każdego noworodka. Opierając się na ryzyku krachu mutacyjnego Palazzo i Gregory oceniają, że tylko dziesięć procent genomu może być funkcjonalne*. Pozostałe dziewięćdziesiąt procent musi być śmieciowym DNA. Jeśli mutacja zmienia śmieciowy DNA, nie wyrządza żadnej szkody, ponieważ śmieci i tak niczego dobrego dla nas nie robią. Gdyby nasz genom był w 80 procentach funkcjonalny – liczba podawana, kiedy pojawiły się wyniki projektu ENCODE – to wymarlibyśmy.


Może to zabrzmieć banalnie, ale uważam, że debata o śmieciowym DNA prawdopodobnie zakończy się gdzieś pomiędzy tymi dwiema skrajnościami. Czy cały genom jest funkcjonalny? Nie. Czy wszystko poza kodującymi białka genami to śmieci? Nie – już od ponad 50 lat wiemy, że niekodujący DNA może być funkcjonalny. Nawet jeśli „tylko” dziesięć procent genomu okaże się funkcjonalne, to jest to olbrzymi zbiór DNA. Jest sześć razy większy niż DNA znaleziony we wszystkich naszych kodujących białka genach. Mogą być tysiące cząsteczek RNA, które naukowcy dopiero muszą zrozumieć.


Nawet jeśli dziewięćdziesiąt procent genomu okaże się śmieciem, nie znaczy to, że te śmieci są nieważne dla naszej ewolucji. Jak pisałem w zeszłym tygodniu w “New York Times”, wiele nowych, kodujących białka genów wyewoluowało z tych niekodujących regionów. Ponadto znaczna część naszego genomu składa się z wirusów i od czasu do czasu ujarzmiamy te wirusowe geny, żeby wykonywały pracę dla naszych organizmów. Śmieci są częścią nas i także pomagają w uczynieniu nas tym, kim jesteśmy.  

*Mam na myśli funkcjonalny w kategoriach swojej sekwencji. DNA może nadal robić coś ważnego strukturalnie – na przykład, pomagać cząsteczkom zaginać się w jakiś konkretny sposób."


The Case for Junk DNA

The Loom, 9 maja 2014

Tłumaczenie: Małgorzata Koraszewska, Konsultacja merytoryczna
polskiego tłumaczenia dr Karol Zub.



Carl Zimmer

Wielokrotnie nagradzany amerykański dziennikarz naukowy publikujący często na łamach „New York Times” „National Geographic” i innych pism. Autor 13 książek, w tym „Parasite Rex” oraz „The Tanglend Bank: An introduction to Evolution”. Prowadzi blog The Loom publikowany przy „National Geographic”. 

 


Skomentuj Tipsa en vn Wydrukuj






Nauka

Znalezionych 1475 artykuły.

Tytuł   Autor   Opublikowany

Kameleon przekazuje różne informacje różnymi częściami ciała   Yong   2013-12-14
Paradoksalne cechy genetyki inteligencji   Ridley   2013-12-18
Wielki skandal z biopaliwami   Lomborg   2013-12-19
Przedwczesna wiadomość o śmierci samolubnego genu   Coyne   2013-12-22
Czy jest życie na Europie?   Ridley   2013-12-22
Nowa data udomowienia kotów: około 5300 lat temu – i to w Chinach   Coyne   2013-12-26
Na Zeusa, natura jest przeżarta rują i korupcją   Koraszewski   2013-12-26
Proces cywilizacji   Ridley   2013-12-28
Jak karakara wygrywa z osami   Cobb   2013-12-29
Żebropławy, czyli dziwactwa ewolucji   Coyne   2013-12-30
Czy może istnieć sztuka bez artysty?    Wadhawan   2013-12-30
Zderzenie mentalności   Koraszewski   2014-01-01
Skrzydlaci oszuści i straż obywatelska   Young   2014-01-02
Delfiny umyślnie narkotyzują się truciznami rozdymków   Coyne   2014-01-04
Długi cień anglosfery   Ridley   2014-01-05
Ciemna materia genetyki psychiatrycznej   Zimmer   2014-01-06
Co czyni nas ludźmi?   Dawkins   2014-01-07
Twoja choroba na szalce   Yong   2014-01-08
Czy mamut włochaty potrzebuje adwokata?   Zimmer   2014-01-09
Pradawne rośliny kwitnące znalezione w bursztynie   Coyne   2014-01-10
Ratując gatunek możesz go niechcący skazać   Yong   2014-01-11
Ewolucja ukryta w pełnym świetle   Zimmer   2014-01-13
Koniec humanistyki?   Coyne   2014-01-15
Jak poruszasz nogą, która kiedyś była płetwą?   Yong   2014-01-16
Jak wyszliśmy na ląd, kość za kością   Zimmer   2014-01-19
Twoja wewnętrzna mucha   Cobb   2014-01-22
Ukwiał żyje w antarktycznym lodzie!   Coyne   2014-01-25
Dlaczego poligamia zanika?   Ridley   2014-01-26
Wspólne pochodzenie sygnałów płodności   Cobb   2014-01-28
Ewolucja i Bóg   Coyne   2014-01-29
O delfinach, dużych mózgach i skokach logiki   Yong   2014-01-30
Dziennikarski „statek upiorów” Greg Mayer   Mayer   2014-01-31
Dlaczego leniwce wypróżniają się na ziemi?   Bruce Lyon   2014-02-02
Moda na kopanie nauki   Coyne   2014-02-03
Neandertalczycy: bliscy obcy   Zimmer   2014-02-05
O pochodzeniu dobra i zła   Coyne   2014-02-05
Sposób znajdowania genów choroby   Yong   2014-02-07
Czy humaniści boją się nauki?   Coyne   2014-02-07
Kiedy zróżnicowały się współczesne ssaki łożyskowe?   Mayer   2014-02-10
O przyjaznej samolubności   Koraszewski   2014-02-12
Skąd wiesz, że znalazłeś je wszystkie?   Zimmer   2014-02-15
Nauka odkrywa nową niewiedzę o przeszłości   Ridley   2014-02-18
Żyjące gniazdo?   Zimmer   2014-02-19
Planeta tykwy pospolitej   Zimmer   2014-02-21
Nowe niezwykłe skamieniałości typu “Łupki z Burgess”   Coyne   2014-02-22
Dziennik z Mozambiku: Pardalota   Naskręcki   2014-02-23
Wskrzeszona odpowiedź z kredy na “chorobę królów”   Yong   2014-02-26
Dziennik z Mozambiku: Sybilla     2014-03-01
Spojrzeć ślepym okiem   Yong   2014-03-02
Intelektualne danie dnia  The Big Think   Coyne   2014-03-04
Przeczołgać się przez mózg i nie zgubić się   Zimmer   2014-03-05
Gdzie podziewają się żółwiki podczas zgubionych lat?   Yong   2014-03-10
Supergen, który maluje kłamcę   Yong   2014-03-14
Idea, którą pora oddać na złom   Koraszewski   2014-03-15
Zwycięstwa bez chwały   Ridley   2014-03-17
Twarde jak skała   Naskręcki   2014-03-18
Pasożyty informacyjne   Zimmer   2014-03-19
Seymour Benzer: humor, historia i genetyka   Cobb   2014-03-21
Kto to był Per Brinck?   Naskręcki   2014-03-23
Potrafimy rozróżnić między przynajmniej bilionem zapachów   Yong   2014-03-25
Godzina Ziemi czyli o celebrowaniu ciemności   Lomborg   2014-03-27
Słonie słyszą więcej niż ludzie   Yong   2014-03-30
Niebo gwiaździste nade mną, małpa włochata we mnie   Koraszewski   2014-03-31
Wielkoskrzydłe   Naskręcki   2014-04-02
Najstarsze żyjące organizmy   Coyne   2014-04-03
Jak zmienić bakterie jelitowe w dziennikarzy   Yong   2014-04-06
Eureka! Sprytne wrony to odkryły   Coyne   2014-04-07
Sukces upraw GM w Indiach   Lomborg   2014-04-09
Wirus, który sterylizuje owady, ale je pobudza   Yong   2014-04-12
Przystosować się do zmiany klimatu   Ridley   2014-04-14
Jeden oddech, który zmienił planetę   Naskręcki   2014-04-16
Najgorsze w karmieniu komarów jest czekanie   Yong   2014-04-17
Kłopotliwa podróż w przyszłość   Ridley   2014-04-19
Pierwsze spojrzenie na mikroby współczesnych łowców zbieraczy     2014-04-23
Seksizm w nauce o jaskiniowych owadach   Coyne   2014-04-26
Musza bakteria zaprasza inne muszki na uczty owocowe   Yong   2014-04-27
Zachwycający rabuś, który liczy sto milionów lat   Cobb   2014-04-28
Mądrość (małych) tłumów   Zimmer   2014-04-29
Tak bada się ewolucję inteligencji u zwierząt   Yong   2014-05-02
Fantastyczna mimikra tropikalnego pnącza   Coyne   2014-05-03
Dlaczego większość zasobównie wyczerpuje się   Ridley   2014-05-04
Pomidory tworzą pestycydy z zapachu swoich sąsiadów   Yong   2014-05-07
Potrawy z pasożytów   Zimmer   2014-05-08
Technologia jest często matką nauki, a nie odwrotnie   Ridley   2014-05-09
Montezuma i jego flirty   Coyne   2014-05-11
Insekt dziedziczy mikroby z plemnika taty   Yong   2014-05-12
Polowanie na nietoperze   Naskręcki   2014-05-14
Zmień swoje geny przez zmianę swojego życia   Coyne   2014-05-15
Obrona śmieciowego DNA   Zimmer   2014-05-17
Gdzie są badania zwierzęcych wagin?   Yong   2014-05-20
Niemal ssaki   Naskręcki   2014-05-21
Zobaczyć jak splątane są gałęzie drzewa   Zimmer   2014-05-23
Dlaczego ramiona ośmiornicy nie plączą się   Yong   2014-05-24
Niezwykły pasikonik szklany   Naskręcki   2014-05-27
Wąż zgubiony i ponownie odnaleziony   Mayer   2014-05-28
Niespodziewani krewni mamutaków   Yong   2014-05-30
Trochę lepszy  świat   Ridley   2014-05-31
Tam, gdzie są ptaki   Mayer   2014-06-01
Ewolucja, ptaki i kwiaty   Coyne   2014-06-02
Jestem spełniony   Naskręcki   2014-06-04

« Poprzednia strona  Następna strona »
Polecane
artykuły

Lekarze bez Granic


Wojna w Ukrainie


Krytycy Izraela


Walka z malarią


Przedwyborcza kampania


Nowy ateizm


Rzeczywiste łamanie


Jest lepiej


Aburd


Rasy - konstrukt


Zielone energie


Zmiana klimatu


Pogrzebać złudzenia Oslo


Kilka poważnych...


Przeciwko autentyczności


Nowy ateizm


Lomborg


„Choroba” przywrócona przez Putina


„Przebudzeni”


Pod sztandarem


Wielki przekret


Łamanie praw człowieka


Jason Hill


Dlaczego BIden


Korzenie kryzysu energetycznego



Obietnica



Pytanie bez odpowiedzi



Bohaterzy chińskiego narodu



Naukowcy Unii Europejskiej



Teoria Rasy



Przekupieni



Heretycki impuls



Nie klanial



Cervantes



Wojaki Chrystusa


Listy z naszego sadu
Redaktor naczelny:   Hili
Webmaster:   Andrzej Koraszewski
Współpracownicy:   Jacek, , Małgorzata, Andrzej, Henryk