Prawda

Piątek, 26 kwietnia 2024 - 20:44

« Poprzedni Następny »


Dlaczego kod genetyczny nie jest uniwersalny


Matthew Cobb 2014-10-06


Jerry A. Coyne:


W tym poście Matthew – który jest znawcą w tej dziedzinie – odpowiada na pytanie o kod genetyczny, które dostałem od pewnego studenta . Natychmiast przekazałem je Matthew, który napisał obszerną odpowiedź. Pisze on właśnie popularnonaukową książkę o kodzie genetycznym.


Gdyby były jakieś wątpliwości, co rozumie się przez określenie “kod genetyczny”, to odnosi się ono do tego, jak sekwencja zasad w DNA (są cztery takie zasady) zostaje przetłumaczona na aminokwasy, składniki białek i produkt większości genów. Jak Matthew opisuje poniżej, jest to kod „trójkowy”: każda przylegająca grupa trzech zasad DNA koduje jeden aminokwas. Ponieważ istnieją cztery zasady, istnieją 64 możliwe trójki („kodony”), które w sumie kodują 20 aminokwasów. Znaczy to, że niektóre aminokwasy są kodowane przez więcej niż jedną sekwencję trójkową.


Tutaj jest kod oparty na tłumaczeniu DNA przez RNA (DNA zostaje transkrybowane w RNA zanim następuje translacja w białka). Dla jakiejkolwiek sekwencji trzech zasad zestawiasz najpierw literę z kolumny po lewej, następnie z rzędu na górze i na koniec z kolumny po prawej. Tak więc, na przykład, CAU będzie „His” czyli aminokwas histydyna. „Stop” odnosi się do kodonów STOP: kiedy proces syntezy białka w rybosomach natyka się na ten kodon, translacja zatrzymuje się i łańcuch aminokwasów kończy.


Ten kod jest niemal uniwersalny (post Matthew zajmuje się rzadkimi wyjątkami), co daje nam przekonanie, że współczesne życie pochodzi od jednego przodka. Gdyby było więcej początków życia niż jeden i potomkowie niezależnie rozwinęliby system DNA—>białko, byłoby bardzo nieprawdopodobne, że wszystkie współczesne gatunki miałyby ten sam kod.



Matthew Cobb:


Glendon Wu, doktoryzujący się w immunologii na University of Pennsylvania, zadał pytanie. Był niedawno na wykładzie i dowiedział się, że mitochondria – małe, wytwarzające energię struktury znajdujące się w komórkach wszystkich organizmów wielokomórkowych, a także w niektórych organizmach jednokomórkowych, takich jak drożdże (ta grupa nazywana jest eukariontami) – zawiera inny kod genetyczny niż reszta z nas. Innymi słowy, twoje komórki zawierają dwie różne wersje kodu genetycznego – jedna dla twojego ludzkiego DNA i druga dla DNA w twoich mitochondriach. Zrozumiałe, że zaintrygowało to Glendona i chciał wiedzieć więcej. 


Tak się składa, że kończę właśnie książkę popularnonaukową o wyścigu zmierzającym do złamania kodu genetycznego (Life’s Greatest Secret). Chociaż część historyczna kończy się na roku 1967, ostatnie trzy rozdziały doprowadzają opowieść do dnia dzisiejsego, a to obejmuje istnienie alternatywnych kodów genetycznych. To co piszę poniżej to jest zaadaptowana wersja części jednego z tych rozdziałów.


Kod genetyczny zawarty jest w twoim DNA i składa się z 64 trzyliterowych „słów” (znanych jako tryplety albo kodony), z których 61 jest kodami dla 20 aminokwasów potrzebnych twojemu ciału do stworzenia białek, oraz trzech, które mówią „stop”. Jeden kodon koduje zarówno aminokwas, jak również oznacza „start”.


Mamy cztery różne rodzaje liter (A, C, G i T w DNA; kiedy informacja genetyczna ulega ekspresji, przechodzi do RNA, gdzie U zastępuje T), a więc z czterema możliwymi literami na każdej z trzech pozycji w kodonie mamy 4 x 4 x 4 = 64 różne kodony.


W 1967 r. rozszyfrowano ostatnie słowo kodu genetycznego. Był to trzeci kodon STOP – UGA (ze skomplikowanych powodów nazwano go opal). Wszyscy, którzy pracowali z kodem genetycznym, zakładali, że ten kod będzie uniwersalny, to jest, że całe życie na Ziemi będzie używało tego samego sposobu reprezentowania aminokwasów w DNA i RNA. Jak to powiedział w 1961 r. Jacques Monod: „co jest prawdą dla E. coli, jest prawdą dla słonia”.


W listopadzie 1979 r. grupa w Cambridge odkryła, że w ludzkich mitochondriach UGA nie koduje stopu, ale zamiast tego produkuje aminokwas tryptofan. Kod genetyczny nie tylko nie jest uniwersalny, ale ten sam organizm może zawierać dwa różne kody genetyczne, jeden w genomowym DNA i drugi w mitochondriach.


Ten fakt mówi nam coś fundamentalnego o historii życia na naszej planecie. W 1967 r. biolog amerykańska Lynn Margulis zaczęła twierdzić, że mitochondria nie są jedynie mikrostrukturami w naszych komórkach, ale są pozostałością niezależnego organizmu jednokomórkowego, który miliardy lat temu zlał się z przodkiem wszystkich organizmów eukariotycznych, prawdopodobnie jako część stosunku symbiotycznego. Nie ona pierwsza wysunęła tę myśl – na początku XX wieku zarówno Paul Portier, jak Ivan Wallin sugerowali, że mitochondria mogą być symbiontami.


Margulis argumentowała, że te symbiotyczne bakterie zostały następnie zamknięte we wszystkich naszych komórkach i utraciły niezależność, ale nie utraciły własnego, oddzielnego genomu – maleńkiego koła DNA o długości około 15,5 tysiąca zasad (dla porównania, ludzki genom jądrowy zawiera około 3 miliardów zasad). Wygląda na to, że wszystkie mitochondria we wszystkich eukariontach na planecie mają wspólnego przodka, który żył 1,5 miliarda lat temu.


Podobne rzeczy zdarzyły się w roślinach, które w podobny sposób zyskały swoje wytwarzające energię organelle chloroplastu. W obu wypadkach trwają spory o to, jaki właściwie rodzaj mikroba zlał się z czym, a przede wszystkim o szybkość, z jaką to się zdarzyło, ale większość naukowców uważa obecnie, że było to pojedyncze wydarzenie, które umożliwiło temu nowemu organizmowi hybrydowemu na rośnięcie do większych rozmiarów i zdobycie energii wymaganej przez bardziej złożone organizmy.


Niezmiernie małe rozmiary genomu mitochondrialnego i jego osobliwe użycie kodonów można wyjaśnić historią tego symbiotycznego stosunku. Genom mitochondrialny koduje bardzo mało białek – albo stracił większość innych genów przed lub krótko po fuzji z naszymi przodkami, albo zostały one włączone w genomowy DNA gospodarza – a więc pojawienie się nowych kodonów w DNA mitochondrialnym poprzez mutację nie miałoby istotnego wpływu na symbionta, którego większość potrzeb zaspokajała komórka gospodarza.


Nie tylko mitochondria mają niezwykły kod genetyczny. W wielu odkryciach, poczynając od 1985 r. stwierdzono, że jednokomórkowe orzęski – maleńkie organizmy takie jak Paramecium – wykazują odmiany jądrowego kodu genetycznego, które pojawiły się kilkakrotnie podczas ewolucji. U niektórych gatunków orzęsków UAA i UAG kodują kwas glutaminowy zamiast stop, podczas gdy u innych UGA koduje tryptofan.


W kilku rzadkich wypadkach w organizmach jednokomórkowych bez jądra UGA i UAG zostały nawet przekodowane przez dobór naturalny do kodowania dodatkowych aminokwasów, nie znajdowanych normalnie w żywych organizmach – selenocysteiny i pirolizyny. Niedawne badanie 5,6 trylionów par zasad DNA z ponad 1700 próbek bakterii i bakteriofagów wyizolowanych ze środowiska naturalnego, włącznie z ciałem ludzkim, ujawniło, że w znaczącym odsetku sekwencji kodony STOP dostały zadanie kodowania aminokwasów, zaś badanie dotychczas niezbadanych mikrobów ujawniło, że w jednej grupie zadanie UAG zmieniło się ze stop do kodowania glicyny.


Wiadomo, że istnieje ponad 15 alternatywnych, niekanonicznych kodów genetycznych i można założyć, że jeszcze więcej pozostaje do odkrycia. W kodach niekanonicznych niemal zawsze inne zadani wyznaczone jest kodonom STOP; może to wskazywać, że jest coś w maszynerii kodonów STOP, co czyni je szczególnie podatnymi na zmianę, lub też może być po prostu tak, że jak długo organizm może nadal kodować stop przy użyciu drugiego kodonu, przeznaczenie jednego z kodonów STOP na aminokwas nie powoduje żadnych problemów.


Dokładny proces, w jaki zachodzi zmiana w kodonie, był przedmiotem bardzo wielu badań teoretycznych i eksperymentalnych i przedstawiono szereg hipotez, by wyjaśnić, jak mogą powstawać odmiany kodu.


Obecny faworyt nazywa się modelem przechwycenia kodonu i został przedstawiony po raz pierwszy przez Jukesa i Osawę w 1987 r. Według tego modelu losowe efekty, takie jak dryf genetyczny, mogą prowadzić do zniknięcia danego kodonu w danym genomie; byłby to efekt podobny do tego, który prowadzi do przechwycenia kodonu przez tRNA, który koduje innym aminokwas.


Niedawne badanie eksperymentalne genetycznie zmodyfikowanych bakterii, w których sztucznie zastąpiono niektóre kodony, poparły ten model, a nawet sugerowały, że zmiana roli kodonów może być w pewnych warunkach korzystna, dostarczając organizmowi szerszego zakresu funkcji.


Reakcje naukowców na nieuniwersalność kodu genetycznego ujawnia coś ważnego o naturze biologii. Było to zupełnie nieoczekiwane i sprzeczne z wszystkimi założeniami wszystkich badaczy, którzy studiowali kod genetyczny, pokazując, że Monod mylił się – co jest prawdziwe dla E. coli, niekoniecznie jest prawdziwe dla słonia. Mimo jednak tej rewolucji podstawowe stanowisko, ustalone podczas łamania kodu, pozostało nienaruszone.


Ścisła uniwersalność kodu nie była prawem ani nawet wymogiem. Jedynym wymogiem było, że każde odejście od tego założenia da się wyjaśnić w ramach ewolucji i przez dające się przetestować hipotezy o historii organizmów. To zostało z powodzeniem spełnione.


Chociaż kod genetyczny nie jest ściśle uniwersalny, jest bezsporne, że życie powstało tylko raz i że wszyscy pochodzimy od populacji komórek, które żyły ponad 3,5 miliarda lat temu, znanych jako Ostatni Uniwersalny Wspólny Przodek  (Last Universal Common Ancestor) czyli LUCA. Alternatywne kody są cechami wtórnymi – pojawiły się po ewolucji całego obecnego życia.


Fakt, że wszystkie organizmy używają aminokwasów lewoskrętnych i uniwersalność RNA jako sposobu zestawiania aminokwasów i tworzenia białek, są bardzo silnym argumentem na poparcie tej hipotezy. W 2010 r. Douglas Theobold wyliczył, że hipoteza, iż wszelkie życie jest spokrewnione, “jest 102860 razy bardziej prawdopodobna niż najbliższa hipoteza konkurencyjna”.


Odkrytą różnorodność w kodzie można wyjaśnić albo w kategoriach głębokiej historii ewolucyjnej eukariontów – ujawniając w ten sposób fascynujący fakt, że nasza ewolucja zależała do przypadkowego zlania się dwóch komórek – albo czymś niedawnym i lokalnym w historii życia konkretnej grupy organizmów, co prawdopodobnie zdarzyło się w wypadku orzęsków.


Mam nadzieje, że odpowiada to na twoje pytanie, Glendon!


Why the genetic code is not universal

Why Evolution Is True, 28 września 2014

Tłumaczenie: Małgorzata Koraszewska



Matthew Cobb

Biolog i pisarz, mieszka i pracuje w Manchesterze, niedawno w Stanach Zjednoczonych ukazała się jego książka „Generation”, a w Wielkiej Brytanii „The Egg & Sperm Race”. Systematycznie publikuje w "LA Times", "Times Literary Supplement", oraz "Journal of Experimental Biology".


Skomentuj Tipsa en vn Wydrukuj




Komentarze
1. nieścisłość Adam 2020-07-03


Nauka

Znalezionych 1475 artykuły.

Tytuł   Autor   Opublikowany

Kameleon przekazuje różne informacje różnymi częściami ciała   Yong   2013-12-14
Paradoksalne cechy genetyki inteligencji   Ridley   2013-12-18
Wielki skandal z biopaliwami   Lomborg   2013-12-19
Przedwczesna wiadomość o śmierci samolubnego genu   Coyne   2013-12-22
Czy jest życie na Europie?   Ridley   2013-12-22
Nowa data udomowienia kotów: około 5300 lat temu – i to w Chinach   Coyne   2013-12-26
Na Zeusa, natura jest przeżarta rują i korupcją   Koraszewski   2013-12-26
Proces cywilizacji   Ridley   2013-12-28
Jak karakara wygrywa z osami   Cobb   2013-12-29
Żebropławy, czyli dziwactwa ewolucji   Coyne   2013-12-30
Czy może istnieć sztuka bez artysty?    Wadhawan   2013-12-30
Zderzenie mentalności   Koraszewski   2014-01-01
Skrzydlaci oszuści i straż obywatelska   Young   2014-01-02
Delfiny umyślnie narkotyzują się truciznami rozdymków   Coyne   2014-01-04
Długi cień anglosfery   Ridley   2014-01-05
Ciemna materia genetyki psychiatrycznej   Zimmer   2014-01-06
Co czyni nas ludźmi?   Dawkins   2014-01-07
Twoja choroba na szalce   Yong   2014-01-08
Czy mamut włochaty potrzebuje adwokata?   Zimmer   2014-01-09
Pradawne rośliny kwitnące znalezione w bursztynie   Coyne   2014-01-10
Ratując gatunek możesz go niechcący skazać   Yong   2014-01-11
Ewolucja ukryta w pełnym świetle   Zimmer   2014-01-13
Koniec humanistyki?   Coyne   2014-01-15
Jak poruszasz nogą, która kiedyś była płetwą?   Yong   2014-01-16
Jak wyszliśmy na ląd, kość za kością   Zimmer   2014-01-19
Twoja wewnętrzna mucha   Cobb   2014-01-22
Ukwiał żyje w antarktycznym lodzie!   Coyne   2014-01-25
Dlaczego poligamia zanika?   Ridley   2014-01-26
Wspólne pochodzenie sygnałów płodności   Cobb   2014-01-28
Ewolucja i Bóg   Coyne   2014-01-29
O delfinach, dużych mózgach i skokach logiki   Yong   2014-01-30
Dziennikarski „statek upiorów” Greg Mayer   Mayer   2014-01-31
Dlaczego leniwce wypróżniają się na ziemi?   Bruce Lyon   2014-02-02
Moda na kopanie nauki   Coyne   2014-02-03
Neandertalczycy: bliscy obcy   Zimmer   2014-02-05
O pochodzeniu dobra i zła   Coyne   2014-02-05
Sposób znajdowania genów choroby   Yong   2014-02-07
Czy humaniści boją się nauki?   Coyne   2014-02-07
Kiedy zróżnicowały się współczesne ssaki łożyskowe?   Mayer   2014-02-10
O przyjaznej samolubności   Koraszewski   2014-02-12
Skąd wiesz, że znalazłeś je wszystkie?   Zimmer   2014-02-15
Nauka odkrywa nową niewiedzę o przeszłości   Ridley   2014-02-18
Żyjące gniazdo?   Zimmer   2014-02-19
Planeta tykwy pospolitej   Zimmer   2014-02-21
Nowe niezwykłe skamieniałości typu “Łupki z Burgess”   Coyne   2014-02-22
Dziennik z Mozambiku: Pardalota   Naskręcki   2014-02-23
Wskrzeszona odpowiedź z kredy na “chorobę królów”   Yong   2014-02-26
Dziennik z Mozambiku: Sybilla     2014-03-01
Spojrzeć ślepym okiem   Yong   2014-03-02
Intelektualne danie dnia  The Big Think   Coyne   2014-03-04
Przeczołgać się przez mózg i nie zgubić się   Zimmer   2014-03-05
Gdzie podziewają się żółwiki podczas zgubionych lat?   Yong   2014-03-10
Supergen, który maluje kłamcę   Yong   2014-03-14
Idea, którą pora oddać na złom   Koraszewski   2014-03-15
Zwycięstwa bez chwały   Ridley   2014-03-17
Twarde jak skała   Naskręcki   2014-03-18
Pasożyty informacyjne   Zimmer   2014-03-19
Seymour Benzer: humor, historia i genetyka   Cobb   2014-03-21
Kto to był Per Brinck?   Naskręcki   2014-03-23
Potrafimy rozróżnić między przynajmniej bilionem zapachów   Yong   2014-03-25
Godzina Ziemi czyli o celebrowaniu ciemności   Lomborg   2014-03-27
Słonie słyszą więcej niż ludzie   Yong   2014-03-30
Niebo gwiaździste nade mną, małpa włochata we mnie   Koraszewski   2014-03-31
Wielkoskrzydłe   Naskręcki   2014-04-02
Najstarsze żyjące organizmy   Coyne   2014-04-03
Jak zmienić bakterie jelitowe w dziennikarzy   Yong   2014-04-06
Eureka! Sprytne wrony to odkryły   Coyne   2014-04-07
Sukces upraw GM w Indiach   Lomborg   2014-04-09
Wirus, który sterylizuje owady, ale je pobudza   Yong   2014-04-12
Przystosować się do zmiany klimatu   Ridley   2014-04-14
Jeden oddech, który zmienił planetę   Naskręcki   2014-04-16
Najgorsze w karmieniu komarów jest czekanie   Yong   2014-04-17
Kłopotliwa podróż w przyszłość   Ridley   2014-04-19
Pierwsze spojrzenie na mikroby współczesnych łowców zbieraczy     2014-04-23
Seksizm w nauce o jaskiniowych owadach   Coyne   2014-04-26
Musza bakteria zaprasza inne muszki na uczty owocowe   Yong   2014-04-27
Zachwycający rabuś, który liczy sto milionów lat   Cobb   2014-04-28
Mądrość (małych) tłumów   Zimmer   2014-04-29
Tak bada się ewolucję inteligencji u zwierząt   Yong   2014-05-02
Fantastyczna mimikra tropikalnego pnącza   Coyne   2014-05-03
Dlaczego większość zasobównie wyczerpuje się   Ridley   2014-05-04
Pomidory tworzą pestycydy z zapachu swoich sąsiadów   Yong   2014-05-07
Potrawy z pasożytów   Zimmer   2014-05-08
Technologia jest często matką nauki, a nie odwrotnie   Ridley   2014-05-09
Montezuma i jego flirty   Coyne   2014-05-11
Insekt dziedziczy mikroby z plemnika taty   Yong   2014-05-12
Polowanie na nietoperze   Naskręcki   2014-05-14
Zmień swoje geny przez zmianę swojego życia   Coyne   2014-05-15
Obrona śmieciowego DNA   Zimmer   2014-05-17
Gdzie są badania zwierzęcych wagin?   Yong   2014-05-20
Niemal ssaki   Naskręcki   2014-05-21
Zobaczyć jak splątane są gałęzie drzewa   Zimmer   2014-05-23
Dlaczego ramiona ośmiornicy nie plączą się   Yong   2014-05-24
Niezwykły pasikonik szklany   Naskręcki   2014-05-27
Wąż zgubiony i ponownie odnaleziony   Mayer   2014-05-28
Niespodziewani krewni mamutaków   Yong   2014-05-30
Trochę lepszy  świat   Ridley   2014-05-31
Tam, gdzie są ptaki   Mayer   2014-06-01
Ewolucja, ptaki i kwiaty   Coyne   2014-06-02
Jestem spełniony   Naskręcki   2014-06-04

« Poprzednia strona  Następna strona »
Polecane
artykuły

Lekarze bez Granic


Wojna w Ukrainie


Krytycy Izraela


Walka z malarią


Przedwyborcza kampania


Nowy ateizm


Rzeczywiste łamanie


Jest lepiej


Aburd


Rasy - konstrukt


Zielone energie


Zmiana klimatu


Pogrzebać złudzenia Oslo


Kilka poważnych...


Przeciwko autentyczności


Nowy ateizm


Lomborg


„Choroba” przywrócona przez Putina


„Przebudzeni”


Pod sztandarem


Wielki przekret


Łamanie praw człowieka


Jason Hill


Dlaczego BIden


Korzenie kryzysu energetycznego



Obietnica



Pytanie bez odpowiedzi



Bohaterzy chińskiego narodu



Naukowcy Unii Europejskiej



Teoria Rasy



Przekupieni



Heretycki impuls



Nie klanial



Cervantes



Wojaki Chrystusa


Listy z naszego sadu
Redaktor naczelny:   Hili
Webmaster:   Andrzej Koraszewski
Współpracownicy:   Jacek, , Małgorzata, Andrzej, Henryk