Prawda

Niedziela, 28 kwietnia 2024 - 17:43

« Poprzedni Następny »


Moja ostatnia praca badawcza. Część 3: Znaczenie


Jerry A. Coyne 2020-02-04


W ostatnim tygodniu napisałem dwa posty o tym, co – jak sądzę – będzie moją ostatnią „pracą badawczą”, tj. pracą, przy której autentycznie wykonuję pracę w laboratorium (popychając muszki). Dość obszernie to opisałem, ponieważ uważam, że eksperyment był ciekawy, wyniki rozstrzygające i ponieważ był to eksperyment, jaki chciało wykonać wielu genetyków ewolucyjnych, ale nie mogło, bo trwał zbyt długo, by otrzymać wyniki w ramach czasowych jednego grantu. Jest to rodzaj eksperymentu, jaki robisz z czystej ciekawości: żeby zobaczyć, co się stanie.

Tutaj raz jeszcze jest sam artykuł; kliknij na link pod zrzutem z ekranu:


 Część 1 była opisem badania: jego celów i metod, co odpowiada z grubsza działom „Wprowadzenie” i „Metody i materiały” w opublikowanym artykule (i w większości opublikowanych artykułów naukowych). W tym poście opisałem, jak stworzyliśmy „roje hybrydowe” z dwóch par siostrzanych gatunków, każda para składająca się z szeroko rozprzestrzenionego gatunku Drosophila żyjącego na kontynencie i endemicznego gatunku siostrzanego ograniczonego do oceanicznej wyspy (D. simulans/D. mauritiana i D. yakuba/D. santomea). Każdy rój zaczynał od 50% DNA, organelli i cytoplazmy z dwóch gatunków rodzicielskich. Stworzyliśmy 8 rojów-replik dla każdej pary.


Celem było po prostu zobaczenie, co się dzieje, kiedy mieszamy dwa gatunki, a potem pozwalamy populacji rozwijać się przez 20 pokoleń bez żadnej narzuconej przez eksperyment selekcji. Czy mieszanka wyewoluuje z powrotem do jednego z gatunków rodzicielskich? Jeśli tak, to do którego i czy ten powrót będzie powtórzony we wszystkich ośmiu replikach? Czy też po prostu otrzymamy mieszankę, która będzie trwała i niewiele się zdarzy? Alternatywnie, czy możemy wręcz otrzymać nowy gatunek – „diploidalny gatunek hybrydowy”, który będzie reprodukcyjnie izolowany od obu gatunków rodzicielskich?  Te pytania mają związek z kompatybilnością genów dwóch gatunków w jednej mieszance: czy geny gatunku są „koadaptowane“, to jest, czy dobrze pracują razem, ale nie mogą tolerować obecności genów innego gatunku? Czy istnieje szeroka tolerancja dla genów blisko spokrewnionego gatunku?


W Części 2
opisałem, co się stało (dział „wyniki” w artykule). W skrócie, wyniki były rozstrzygające i powtarzalne: wszystkie repliki w obu rojach powróciły do gatunku rodzicielskiego – w obu wypadkach do dominującego, kontynentalnego gatunku (D. simulans w jednym wypadku i D. yakuba w drugim). Ten powrót był widoczny w kilku cechach morfologicznych, które odróżniają samców od siebie w gatunkach rodzicielskich, w zachowaniu godowym muszek, w ich płodności przy krzyżowaniu z dwoma gatunkami rodzicielskimi i w sekwencjach samego DNA. Ponieważ wszystkie cechy i różnice zachowania są z pewnością oparte na DNA, wszystkie wyniki wspierają się wzajemnie.   Niemniej, obcy DNA nie został całkowicie wyeliminowany w rojach po 20 pokoleniach, ale to jest tylko jeden rok w laboratorium i mógłby być wyeliminowany bardziej przez dobór przez dłuższy czas.  


Co więc to wszystko znaczy?


Dobór spowodował, że każdy hybrydowy rój powrócił do organizmu bardzo przypominającego jeden z rodzicielskich gatunków.
 W żadnym z wypadków nie otrzymaliśmy niczego podobnego do nowego hybrydowego gatunku: we wszystkich wypadkach rój powrócił do wyglądu i zachowania jak kontynentalny gatunek rodzicielski i jego DNA było przeciętnie w 93-94% DNA dominującego gatunku, a reszta genomu pokazywała nieco DNA z mniejszego gatunku.


To znaczy, że jakiś rodzaj doboru eliminował z czasem z mieszanki geny gatunku wyspiarskiego. Nie wiemy, co to jest za rodzaj doboru (patrz poniżej), ale z pewnością wiele z tego musiało dotyczyć niekompatybilności między gatunkami, które prowadziły do sterylności hybryd i dyskryminacji w wyborze partnerów. Będą one wyeliminowane niezależnie od tego, w jakim środowisku testujesz muszki, bo taki dobór jest niezależny od środowiska. Dotyczy tylko pozbywania się genów, które dają źle funkcjonujące hybrydy. A eliminacja tych genów wyeliminuje także cały DNA związany z tymi genami, niezależnie od tego, czy jest neutralny, czy także szkodliwy. To jest „efekt autostopowicza” spowodowany faktem, że geny siedzą obok siebie na chromosomach i jeśli szybko eliminujesz jeden odcinek, wyeliminuje to również sąsiednie geny z populacji. Zaskoczyło mnie jednak, jak szybki był to powrót i jak powtarzalny: nie tylko wszystkie repliki powróciły do tego samego rodzica, odcinki DNA, które „pozwalały” na obce geny, generalnie były te same we wszystkich replikach.  


To prowadzi do kolejnego pytania:


Dlaczego populacje zawsze wracały do kontynentalnego gatunku?
  Jest tu kilka możliwości i krótką odpowiedzią jest to, że po prostu nie wiemy. Oto możliwości (kilka z nich mogło, oczywiście, działać równocześnie).  


a. Gatunki wyspiarskie, obejmujące mniejsze populacje, mogą być wynikiem większego chowu wsobnego niż gatunki kontynentalne. Jeśli tak jest, gatunki wyspiarskie  mogą mieć wyższą częstotliwość szkodliwych genów, bo takie geny dochodzą do wyższych częstotliwości w mniejszych populacjach. (To dlatego w małych, wsobnych grupach ludzi, takich jak Amisze lub Bracia Dunkers, jest dużo zaburzeń genetycznych.) W takich wypadkach „zdrowsze” geny z mniej wsobnego gatunku kontynentalnego zastąpią te szkodliwe geny. Uważam to za mało prawdopodobne, ponieważ gatunki wyspiarskie są nadal obecne, przynajmniej dzisiaj, w znacznych ilościach, co czyni je mniej podatnymi na „depresję wsobną”. Ponadto, ta depresja dotknęłaby niemal wszystkie odcinki genomów gatunków wyspiarskich.


b. Kontynentalne gatunki są bardziej ekologicznie uogólnione niż gatunki wyspiarskie, jako że te drugie żyją w ograniczonym środowisku, podczas gdy te pierwsze wędrują przez bardziej zróżnicowane habitaty. (Na przykład, D. santomea jest ograniczona do lasu deszczowego na dużej wysokości na Saõ Tomé, podczas gdy D. yakuba może żyć w lasach, na łąkach i na sawannie). To znaczy, że kontynentalne gatunki mogą mieć genomy, które obejmują wszechstronne geny i dlatego mogą z większym prawdopodobieństwem zastąpić geny wyspiarskiego gatunku w obcym środowisku laboratorium. Kilku ekologów zaproponowało tezę, że gatunki endemiczne dla wyspy są często węziej zaadaptowane niż ich kontynentalni krewni.


c. Kontynentalne gatunki były lepiej dostosowane do warunków środowiskowych, jakich użyliśmy (standardowa pożywka mąka kukurydziana/agar/drożdże, hodowane w temperaturze 24°C, 12 godzinne cykle światła-ciemności i wysoka wilgotność), ale w innych warunkach geny wyspiarskich gatunków mogły być lepiej dostosowane. Na przykład, D. santomea woli niższe temperatury niż D. yakuba i może, gdybyśmy zostawili roje w temperaturze, powiedzmy, 18° C, rój powróciłby do D. santomea. To jeszcze trzeba będzie zbadać.


d. Genomy wyspiarskich gatunków mogą po prostu zawierać więcej genów powodujących niekompatybilność hybryd niż gatunki kontynentalne. To prowadziłoby do szybszej eliminacji „wyspiarskich” genów, a więc powrotu do gatunku kontynentalnego. Jest na to nieco dowodów dla jednej z tych par, ale nie dla drugiej.   


Dlaczego istnieją paralelne odcinki genomu, które zatrzymały ”obce” geny z wyspiarskich gatunków?
Jak wspomniałem w poprzednim poście, pewne odcinki genomu, takie jak środek prawego ramienia drugiego chromosomu w roju D. santomea/D. yakuba oraz czubek lewego ramienia trzeciego chromosomu w roju D. mauritiana/D. simulans  łatwiej zatrzymywały geny gatunków wyspiarskich, choć nie w dużej częstotliwości. Nie wiemy, dlaczego tak jest, ale wskazuje to na paralele w siłach selekcyjnych działających na różne repliki. Zachowane odcinki mogą zawierać „neutralne” geny wyspiarskich gatunków lub też wyspiarskie geny mogły być poddane pozytywnej selekcji na tych odcinkach, powodując ich wyższą częstotliwość. Ponieważ geny wyspiarskich gatunków w rzeczywistości nie osiągnęły wysokich częstotliwości (nie widzieliśmy żadnego wypadku odcinka, który miał dwie kopie genów wyspiarskich), podejrzewam, że są to tylko odcinki, które nie mają wielu genów wpływających na dostosowanie hybryd.   


Ponadto, chromosom X miał najniższy stopień zachowania genów obcego gatunku. Jest to zgodne z naszą poprzednią obserwacją, że chromosomy X mają więcej genów powodujących problemy hybryd, bo są obecne tylko w jednej kopii u samców i mogą w nich ulegać ekspresji zarówno dominujące, jak recesywne geny, które powodują problemy u hybryd. 


Czy istnieje paralela w ilości i naturze introgresji (domieszce genów) między tym, co widzieliśmy w laboratorium, a tym, co dzieje się w naturze?
 Możemy odpowiedzieć na to pytanie tylko w sprawie jednej pary: D. yakuba/D. santomea. Te gatunki bowiem występują wspólnie w wąskiej „strefie hybrydowej” na wysokości około 1000 m na São Tomé i hybrydy tworzą się naturalnie. Możemy więc zobaczyć, ile obcego genomu przechodzi z jednego gatunku do drugiego w naturze.


Odpowiedź na to brzmi: bardzo mało. Jest tylko kilka odcinków genomu każdego gatunku, który zawiera niewielkie ilości genów z drugiego gatunku, co sugeruje, że także w naturze obce geny nie są zbyt dobrze tolerowane. Jednak odcinki genomu, gdzie widzimy pewne genowe „zanieczyszczenie” w naturze, nie są tymi, które pokazały to w naszym laboratoryjnym eksperymencie. (W naturze niska liczba wymian genów jest dość równo rozdzielona w całym genomie, podczas gdy w laboratorium była skoncentrowana w określonych miejscach.) To mogłoby odzwierciedlać albo fakt, że dobór nie był zakończony w naszym roju, albo że natura selekcji w stanie dzikim różni się od tej, która zachodzi w laboratorium, a więc inne obce geny będą tolerowane. 


Kilka zastrzeżeń. 
Nasze badanie nie pokazuje, że tworzenie się nowego gatunku po hybrydyzacji jest niemożliwe: w końcu, użyliśmy tylko czterech gatunków Drosophila (hybrydowe gatunki nie są znane w tym rodzaju), a nowe hybrydowe gatunki są znane w innych grupach, takich jak motyle i słoneczniki, chociaż dla gatunków diploidalnych nie są one częste. (Niektórzy mówią, że są częste, ale dowody na to są bardzo słabe.)


Ponadto, użyliśmy tylko dwóch szczepów w każdej hybrydyzacji: jeden z każdego gatunku. Chociaż szczepy nie były wsobne, istnieje możliwość, że gdybyśmy zaczęli z innym materiałem genetycznym z tych gatunków, uzyskalibyśmy inne wyniki. Byliśmy ograniczeni do użycia tylko niewielu szczepów, ponieważ musieliśmy otrzymać ich sekwencje DNA, żeby móc ustalić, który DNA w roju pochodził z którego gatunku. To byłoby dużo trudniejsze, gdybyśmy użyli bardziej heterogeniczny materiał startowy. Musieliśmy także wyeliminować inwersję chromosomów w tych szczepach, której obecność przeszkadzałaby wymianie genów, więc byliśmy ograniczeni do użycia tych “homosekwencyjnych” szczepów.


I, jak wspomniałem powyżej, także z tymi szczepami wyniki mogły być inne, gdybyśmy hodowali je w innych warunkach laboratoryjnych – powiedzmy, używając innej pożywki lub innej temperatury. Takie badania powinny być robione, ale wątpię, czy będą, biorąc pod uwagę trudności, jakie mieliśmy przy pracy z czterema gatunkami, po jednym szczepie z każdego i w identycznych warunkach laboratoryjnych.


Konsekwentność wyników naszego badania pokazuje jednak, że – przynajmniej w naszych warunkach eksperymentalnych – obcy DNA nie jest tolerowany nawet u blisko spokrewnionych gatunków.


Tutaj jest dziewięć gatunków D. melanogaster  (samiec z każdej). D. santomea (e) jest pośrodku, godny uwagi z powodu braku pigmentacji. I na tym kończy się ta seria postów.   



My last research paper. Part3: Significance

Why Evolution Is True, 29 stycznia 2020

Tłumaczenie: Małgorzata Koraszewska



Jerry A. Coyne

Emerytowany profesor na wydziale ekologii i ewolucji University of Chicago, jego książka "Why Evolution is True" (Polskie wydanie: "Ewolucja jest faktem", Prószyński i Ska, 2009r.) została przełożona na kilkanaście języków, a przez Richarda Dawkinsa jest oceniana jako najlepsza książka o ewolucji.  Jerry Coyne jest jednym z najlepszych na świecie specjalistów od specjacji, rozdzielania się gatunków. Jest również jednym ze znanych "nowych ateistów" i autorem książki "Faith vs Fakt". Jest wielkim miłośnikiem kotów i osobistym przyjacielem redaktor naczelnej.

Skomentuj Tipsa en vn Wydrukuj






Nauka

Znalezionych 1475 artykuły.

Tytuł   Autor   Opublikowany

Akupunktura na pogotowiu też nie działa   Novella   2017-07-04
Alaska — nurniczki i obopólny dobór płciowy   Lyon   2019-08-20
Ale czy mogą cierpieć?   Dawkins   2018-07-07
Ale jak to bezbarwnikowy?   Łopatniuk   2019-06-01
Ale najpierw kawa   Tonhasca Júnior   2024-03-21
Ale tego wija lepiej zostaw w spokoju   Łopatniuk   2018-08-24
Alfred Sturtevant: bohater genetyki   Coyne   2017-02-06
Alternatywna medycyna zabija   Novella   2017-12-26
Americana   Tonhasca Júnior   2023-05-24
Amerykańscy aktywiści na rzecz niedożywienia w Ugandzie   Ongu   2016-03-01
Amfisbeny   Naskręcki   2014-06-16
Amonit (i masa innych stworzeń) znaleziona w birmańskim bursztynie   Coyne   2019-06-21
Anglia pozwala na uprawy poddane edycji genów   Novella   2023-04-03
Animula blandula, blastula vagularzecz o zarodkach wędrujących gdzie nie trzeba   Łopatniuk   2015-12-19
Antynauka czystego jedzenia   Novella   2017-11-08
Antynaukowe przesłanie „Frankensteina” zawsze było głupie   Ridley   2017-06-12
Antyszczepionkowcy - pielęgniarka lub lekarz nie powinni opiekować się dziećmi     2018-09-10
Apoptoza całego ciała   Dennett   2018-11-09
Aquilops, mały dinozaur, który wiele mógł   Farke   2015-01-15
Architektura żywych budowli   Yong   2014-06-20
Argument neuroróżnorodności na rzecz wolności słowa   Miller   2017-08-08
Artykuł w “Nature” sugeruje, że ludzie żyli w Ameryce Północnej 130 tysięcy lat temu   Mayer   2017-04-29
Artykuł w naukowym piśmie ”Nature” dyskredytuje naukę i „scjentyzm”, kwestionuje wartości Oświecenia   Coyne   2019-10-22
Artykuł w piśmie „Science”: rozszerzyć DEI w STEMM   Coyne   2024-04-19
Astrocyty tworzą nowe neurony po udarze   Łopatniuk   2015-03-04
Atak “doktorostwa Wolfson” na rodziców chłopca, który zmarł na koklusz     2018-09-20
Ateista z chwilową luką w pamięci i w szoku niewolnictwa   Dawkins   2018-09-21
Australijskie koty łożyskowe   Mayer   2015-12-17
Badacz: Ludzki zmysł węchu jest lepszy niż wszyscy myślą; może rywalizować z psim!   Coyne   2017-05-27
Badaczka z Leakey Foundation twierdzi, że kości orangutanów mówią nam, że biologiczna płeć jest spektrum, a nie binarna   Coyne   2023-06-30
Badania dowodzą, że fakty nie mają znaczenia: jak propaganda wykorzystuje i normalizuje antysemityzm     2022-08-03
Badania z poślizgiem   Łopatniuk   2016-12-31
Badanie akupunktury jako terapii na dławicę piersiową   Novella   2019-08-23
Badanie niewiernych norników wiąże geny z mózgiem i z zachowaniem   Yong   2015-12-29
Badanie zaszczepionych i nieszczepionych   Novella   2017-05-20
Bajka o kaczkach karolinkach   Coyne   2016-12-16
Bakterie, które zamieniają ameby w farmerów   Yong   2015-09-01
Bakteryjne ogniwa słoneczne   Novella   2017-09-09
Bakłażan Bt – fałszywa narracja przeciwko GMO   Novella   2016-12-05
Bakłażan GMO jest udokumentowaną wygraną ubogich farmerów   Conrow   2021-09-23
Bambusowi matematycy   Zimmer   2015-05-25
Banany edytowane przez CRISPR   Novella   2021-03-02
Barwny erudyta J.B.S. Haldane   Coyne   2020-08-28
BBC szerzy propagandę rolnictwa organicznego, a biedni na świecie cierpią   i Kathleen Hefferon   2023-10-13
BBC znowu błędnie przedstawia ewolucję, opisując nowe odkrycie wczesnych ssaków wyższych   Coyne   2017-11-14
Bekon bez azotynów   Novella   2018-01-25
Bez płuc i dobrze mu z tym   Naskręcki   2016-02-12
Bez serc, bez głowy   Łopatniuk   2016-07-30
Bezwstydne organiczne sianie strachu   Novella   2018-02-12
Bezzbożowa karma dla psa   Novella   2019-08-29
Biały jak śnieg, żółciutki jak kaczuszka   Łopatniuk   2019-09-04
Biodynamiczne rolnictwo i inne nonsensy   Novella   2017-06-28
Biolog ewolucyjny błądzi pisząc o doborze płciowym na łamach “New York Times”   Coyne   2017-05-17
Biologia męskiej agresji i dlaczego nie jest to tylko „socjalizacja”   Coyne   2019-12-24
Biologia rezygnacji z działania: kiedy kontynuować, a kiedy spasować   Coyne   2023-04-26
Biologia rozwoju ujawnia ewolucyjną historię   Novella   2019-10-15
Biomedyczne znaczenie płci (i jej binarnej natury)   Coyne   2022-09-22
Biotechnologia jest pilnie potrzebna w Afryce – dla gospodarki i środowiska   Ridley   2017-12-08
Biotechnologia może usunąć brudne stopy z ulubionego piwa Ugandy   Ongu   2016-06-14
Biotechnologia podnosi plony wysokobiałkowego afrykańskiego pochrzynu   Wetaya   2022-02-04
Bliskie spotkania z baronem MünchausenemPaulina Łopatniuk     2017-07-22
Bodźce do innowacji w końcu pokonają COVID-19   Ridley   2020-06-27
Brazylia liczy na technologię izraelską, by rozwiązać śmierdzący problem   Leichman   2017-05-04
Brian Charlesworth o błędach nowego artykułu rzekomo pokazującego, że fundamentalne założenie ewolucji neodarwinowskiej jest błędne   Coyne   2022-05-16
Brudna pardwa górska   Lyon   2018-12-24
Budzenie zmarłych   Novella   2018-05-21
Bądźcie sceptyczni wobec wideo pokazujących “skutki uboczne” szczepionki   Novella   2021-01-28
Bąkojady czyszczą nosorożce   Coyne   2023-01-18
Błędna historia antykolonializmu   Tupy   2021-04-21
Błędna krytyka genetycznych testów na pochodzenie   Coyne   2023-06-02
Błędne wyobrażenia o ewolucji   Coyne   2023-06-16
Błogosławieni ci, którzy wycofują   Jacoby   2019-10-19
Błysk światła w mroku   Sheagren   2020-06-12
Błąd atrybucji, sofizmat rozszerzenia (atakowanie chochoła) i zasada wielkoduszności   Novella   2018-03-14
Carl Sagan i wolność wątpienia   Jacoby   2022-07-18
Carl Zimmer o gatunkach i ochronie     2024-02-29
Centrala muszek owocowych: Bloomington Drosophila Stock Center   Coyne   2020-12-29
ChatGPT niemal zdaje lekarski egzamin końcowy   Novella   2023-02-21
Chcąc zadowolić antyaborcjonistów administracja Trumpa tnie finansowanie badań medycznych przy użyciu tkanki płodowej   Coyne   2019-06-11
Chemicznie zakamuflowana żaba     2015-12-12
Chiński dinozaur miał skrzydła jak nietoperz i pióra   Yong   2015-05-14
Choroba bananów, GMO i ewolucja produkcji żywności   Ongu   2017-08-19
Choroba zielonych mięśni   Łopatniuk   2019-09-14
Chromosom jak szczotka, czyli co robi Ki-67   Łopatniuk   2016-07-09
Chromosomy Y ludzi, neandertalczyków i denisowian   Novella   2020-10-08
Chwytówka modliszkowata ma chodzącą poczwarkę, która wspina się na drzewa przed przekształceniem   Coyne   2017-12-19
Ciemna materia genetyki psychiatrycznej   Zimmer   2014-01-06
Ciepło zabija. Zimno zabija wielu więcej   Jacoby   2023-01-09
Ciepło, zimno i śmierć w oczach mediów   Lomborg   2017-07-21
Cierpienie i pytanie, czy przestaniemy jeść mięso   Koraszewski   2021-07-14
Ciężarna wężyca przygotowuje się do macierzyństwa   Yong   2014-11-20
Ciąg dalszy sporu o dobór grupowy   Coyne   2015-04-22
Co byłoby, gdyby Wilkins i Franklin umieli ze sobą współpracować?   Cobb   2016-09-03
Co czyni nas ludźmi?   Dawkins   2014-01-07
Co kręci płaskoziemców   Novella   2019-03-02
Co mówi nam ruch płaskiej Ziemi     2018-05-17
Co mamy zrobić z neuroróżnorodnością?   Coyne   2015-07-02
Co nam daje psychologia ewolucyjna?   Flock   2018-11-01
Co nauka może powiedzieć pani Ocasio-Cortez o klimacie   Lomborg   2019-02-15
Co robi mózg, kiedy widzisz nie to, co chcesz?   Koraszewski   2017-01-03

« Poprzednia strona  Następna strona »
Polecane
artykuły

Lekarze bez Granic


Wojna w Ukrainie


Krytycy Izraela


Walka z malarią


Przedwyborcza kampania


Nowy ateizm


Rzeczywiste łamanie


Jest lepiej


Aburd


Rasy - konstrukt


Zielone energie


Zmiana klimatu


Pogrzebać złudzenia Oslo


Kilka poważnych...


Przeciwko autentyczności


Nowy ateizm


Lomborg


„Choroba” przywrócona przez Putina


„Przebudzeni”


Pod sztandarem


Wielki przekret


Łamanie praw człowieka


Jason Hill


Dlaczego BIden


Korzenie kryzysu energetycznego



Obietnica



Pytanie bez odpowiedzi



Bohaterzy chińskiego narodu



Naukowcy Unii Europejskiej



Teoria Rasy



Przekupieni



Heretycki impuls



Nie klanial



Cervantes



Wojaki Chrystusa


Listy z naszego sadu
Redaktor naczelny:   Hili
Webmaster:   Andrzej Koraszewski
Współpracownicy:   Jacek, , Małgorzata, Andrzej, Henryk