Prawda

Wtorek, 14 maja 2024 - 05:54

« Poprzedni Następny »


Chromosom jak szczotka, czyli co robi Ki-67


Paulina Łopatniuk 2016-07-09

Zestawienie najbardziej typowych barwień immunohistochemicznych dla samych tylko nowotworów nerek pochodzenia nabłonkowego; http://www.archivesofpathology.org/doi/pdf/10.5858/arpa.2014-0078-RA
Zestawienie najbardziej typowych barwień immunohistochemicznych dla samych tylko nowotworów nerek pochodzenia nabłonkowego; http://www.archivesofpathology.org/doi/pdf/10.5858/arpa.2014-0078-RA

Praca patologów upływa nie tylko pośród pięknych obrazów mikroskopowych w różu i fiolecie i nie tylko pośród wycinków skórnych czy zwałów jelit (by już nie wspominać o ich zawartości). To też dziesiątki badań dodatkowych – histochemicznych i immunohistochemicznych (rzadziej testów genetycznych), skrótów literowych, białek i białeczek, które trzeba znać, by doprecyzować nasze z różu i fioletu wzięte rozpoznania. Tabele badań dodatkowych typowych dla poszczególnych zmian i kryteria rozpoznań, całe litanie szczegółowych podpunktów niezbędnych do pełnej oceny zaawansowania i złośliwości histologicznej najrozmaitszych nowotworów. Ot, dużo zabawy i niemało klasycznej pamięciówki.

Tak, pamięciówki właśnie, bo nie będę was oszukiwać. Niejednokrotnie niewiele wiemy o samej naturze charakterystycznych dla danych zmian związków, których obecność oceniamy przy pomocy badań immunohistochemicznych. Nawet ci spośród nas, którzy przygotowują się akurat do egzaminów specjalizacyjnych, choć często potrafią wiele z nich wyliczyć i generalnie mają głowy ponapychane niekoniecznie później przydatną w praktyce (ale za to niezwykle przydatną na egzaminach) wiedzą, spojrzą na was dziwnie, jeśli zaczniecie dopytywać, co tak naprawdę kryje się pod niektórymi nazwami czy skrótami i jakie to coś pełni w komórkach funkcje.

Rak przewodowy sutka wybarwiony przeciwciałem przeciwko HER2; CC BY-SA 3.0, autor nieznany, Wikipedia

Rak przewodowy sutka wybarwiony przeciwciałem przeciwko HER2; CC BY-SA 3.0, autor nieznany, Wikipedia



OK, niektóre skróty i nazwy łatwo przypiszemy nie tylko odpowiednim lokalizacjom, ale i funkcjom, jasne. Takie receptory estrogenowe na przykład, ER. To w miarę powszechna wśród lekarzy wiedza, przekładająca się zresztą na klinikę, na leczenie pacjentek z rakiem sutka chociażby. Zresztą samo hasło “receptor” niejako definiuje nam z czym mamy do czynienia. Wyspecjalizowana struktura wiążąca dany czynnik (w tym przypadku estrogeny) i przekazująca dalej związaną z nim informację czy instrukcje. Jeśli wykryjemy receptory estrogenowe w komórkach raka sutka, wiemy, że mamy szansę wpłynąć na przebieg choroby, wzbogacając terapię o preparaty wpływające na te receptory. Jeśli nie, podobne leczenie nie ma sensu – po cóż więc dodatkowo obciążać pacjentkę i budżet? Albo HER2, receptor dla naskórkowego czynnika wzrostu, którego obecność na wystarczająco podwyższonym poziomie również otwiera chorym na raka piersi czy żołądka drogę do dodatkowych opcji terapeutycznych.

Wybarwione na brązowo odpowiednim przeciwciałem CDX2, Białko, Które Barwi Jelito, w gruczolakoraku jelita grubego; CC BY 2.0, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3331835/
Wybarwione na brązowo odpowiednim przeciwciałem CDX2, Białko, Które Barwi Jelito, w gruczolakoraku jelita grubego; CC BY 2.0, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3331835/


Białko, Które barwi Się W Tarczycy, Ale I W Płucu, czyli TTF-1 w przerzucie skórnym raka płuc; CC BY-NC-ND 4.0, http://escholarship.org/uc/item/418498mf
Białko, Które barwi Się W Tarczycy, Ale I W Płucu, czyli TTF-1 w przerzucie skórnym raka płuc; CC BY-NC-ND 4.0, http://escholarship.org/uc/item/418498mf

Obok tego istnieją dziesiątki białek, które kojarzymy dość mgliście, wiedząc – oczywiście – jednocześnie kiedy i w jakim celu należy je zbadać. Ot, takie CDX2 na przykład. Przeciwciało przeciwko CDX2 jest bardzo przydatne. W zestawie z paroma innymi bywa nieocenione, gdy chcemy się upewnić czy dany rak wywodzi się z nabłonka jelitowego (z nabłonka jelita grubego zwłaszcza), ale nie wydaje mi się, by wiedza o tym, co konkretnie CDX2 robi w organizmie była jakoś szczególnie powszechna. Dla większości z nas jest to (właściwie nie tyle “to”, ile przeciwciało przeciwko “temu”) po prostu Białko, Które Barwi Jelito. Podobnie będzie na przykład z TTF1, Białkiem, Które barwi Się W Tarczycy, Ale I W Płucu. I nie, nie jest to żaden zarzut wobec kolegów i koleżanek po fachu. Nie jest to bynajmniej wiedza jakoś szczególnie przydatna w praktyce – tak naprawdę w naszej codziennej pracy musimy wiedzieć “tylko” co, jak i w jakiej sytuacji się wybarwi. I umieć wyciągnąć z tego wnioski. “Dlaczego” bywa tu oczywiście fajnym dodatkowym smaczkiem, ale nie jest niezbędne.


Dużego neoplazja śródnabłonkowa (dysplazja) szyjki macicy, CIN3; na górze typowo wybarwiony obraz, na dole barwienie przeciwko Ki-67 – widać jak intensywnie namnażają się komórki nabłonka; CC BY, https://www.flickr.com/photos/libertasacademica/6946005282/
Dużego neoplazja śródnabłonkowa (dysplazja) szyjki macicy, CIN3; na górze typowo wybarwiony obraz, na dole barwienie przeciwko Ki-67 – widać jak intensywnie namnażają się komórki nabłonka; CC BY, https://www.flickr.com/photos/libertasacademica/6946005282/

Ha, ale właśnie. “Dlaczego” i “co konkretnie robi”, choć nie są pytaniami w pracy patologów niezbędnymi, są jednocześnie tym, co dodaje smaku nieco nudnawym niekiedy niezbędnym w pracy wyliczankom. Poza tym zawsze fajnie jest wiedzieć więcej. Zwłaszcza gdy chodzi o białko tak bardzo dla patologów istotne, jak Ki-67. Najprościej mówiąc, jest Ki-67 markerem proliferacji, czyli mówi nam o tym, że komórki, w których Ki-67 wykrywamy, dzielą się. A że jedną z istotniejszych cech większości nowotworów jest ich niekontrolowane intensywne namnażanie się właśnie, sami na pewno rozumiecie, jak przydatna może być w codziennej pracy możliwość w miarę obiektywnej oceny skali tego namnażania się w poszczególnych zmianach. Pomaga nam to, zależnie od sytuacji, rozpoznawać niektóre nowotwory i zmiany przednowotworowe, odróżniać poszczególne nowotwory od siebie, jak i oceniać jak bardzo agresywnie będzie się dana zmiana zachowywać. Ki-67 jest głównym bohaterem rozlicznych patologicznych tabelek, skal i wytycznych. Nie rozpoznaje się raka neuroendokrynnego przewodu pokarmowego bez wybarwienia preparatów i oceny poziomu tego białka, nie stawia się rozpoznania rakowiaka płuca ani raka drobnokomórkowego. A rak sutka? chłoniaki? glejaki? Ki-67 to nieodłączny towarzysz patologów. Ale patolodzy niewiele wiedzą o swoim immunohistochemicznym przyjacielu. A w każdym razie niewiele wiedzieli.


Choć mamy do czynienia z białkiem opisywanym w patomorfologii od wczesnych lat osiemdziesiątych, tak naprawdę o jego funkcji do zeszłego tygodnia mało mogliśmy powiedzieć, niezależnie od poziomu naszej dociekliwości i dobrych chęci. Co się zatem w zeszłym tygodniu zmieniło? Otóż 29 czerwca czasopismo Nature opublikowało pracę szczegółowo zajmującą się właśnie funkcją Ki-67. Nie mogłam się nie zachwycić. I nie mogłam się nie podzielić.


Niebieskie chromosomy w dzielącej się komórce śródbłonka, a wokół każdego z nich zielonkawa otoczka z Ki-67; Zhiguo.he, Wikipedia, CC BY-SA 4.0
Niebieskie chromosomy w dzielącej się komórce śródbłonka, a wokół każdego z nich zielonkawa otoczka z Ki-67; Zhiguo.he, Wikipedia, CC BY-SA 4.0

Ki-67 jest białkiem, którego (z pewnymi nielicznymi wyjątkami) poszukujemy w jądrze komórkowym. Od jakiegoś czasu wiemy też (a w każdym razie mogą wiedzieć ci, którym chce się trochę za tą wiedzą pogrzebać), że w tym jądrze Ki zwykło lokalizować się na powierzchni chromosomów. Ale po co? Na to pytanie odpowiedzi dostarczyły dopiero Sara Cuylen i Claudia Blaukopf z wiedeńskiego Institut für Molekulare Biotechnologie wraz z resztą ekipy badawczej.


Żeby rzecz wyjaśnić zapewne należałoby się odrobinę cofnąć. Wspomniałam, że Ki-67 układa się podczas podziału komórki na powierzchni chromosomów. Ale czy wiecie czym są chromosomy? Zapewne hasło to wywołuje z pamięci podręcznikowe rządki lub grupki zgrabnych “iksów”, prawda? Czasem uporządkowanych w elegancki zestaw nazywany kariogramem, a przedstawiający komplet chromosomów danej komórki. Prawidłowe skojarzenie. Ale też nie powinniśmy zapominać, że przez większą część życia komórki jej DNA wcale nie jest upakowane w takie zgrabne regularne “iksiki”.


Niejednorodna, nieco ziarnista, struktura chromatyny jądra komórkowego pomiędzy podziałami, po lewej widoczny fragment dzielącego się jądra sąsiedniej komórki z wyraźnie widocznymi chromosomami; JamMan, Wikipedia, domena publiczna.
Niejednorodna, nieco ziarnista, struktura chromatyny jądra komórkowego pomiędzy podziałami, po lewej widoczny fragment dzielącego się jądra sąsiedniej komórki z wyraźnie widocznymi chromosomami; JamMan, Wikipedia, domena publiczna.

Zajmująca pomiędzy ewentualnymi podziałami komórkowymi (w tak zwanej interfazie) jądro komórkowe chromatyna, kompleks DNA i pomagających je upakować białek (pamiętajcie, w takim niewielkim w końcu, kilkumikrometrowej zazwyczaj średnicy, jądrze komórkowym trzeba upchać około dwóch metrów nici DNA), tworzy draperie i festony ciaśniej czy luźniej pozbijanych pętli i zwojów. Pod mikroskopem świetlnym obserwujemy w tym czasie jedynie niejednorodną, mniej czy bardziej ziarnistą, rozproszoną “masę”.



Te pomieszane zwały chromatyny gdy nadchodzi czas podziału komórki, kiedy rozpoczyna się mitoza, kondensują się, przybierając ostatecznie postać zupełnie odrębnych, oddzielonych od siebie struktur, znacznie bardziej zbitych i upakowanych chromosomów. Chromosomy takie (tak, te “iksy” właśnie, które kojarzycie z podręczników) zbudowane są zasadniczo z tych samych składników, co opisane zwoje chromatyny – są tylko ściślej upchnięte. Cały proces zachodzi stopniowo, przechodząc przez kolejne stadia mitozy, od profazy z dopiero wyodrębniającymi się i kondensującymi chromosomami poczynając, po metafazę, w której chromosomy przyjmują swą “kanoniczną” książkową formę i anafazę, gdzie rozdzielają się, tworząc chromosomy potomne, by zakończyć proces podziału komórki telofazą (tak, wiem, to trochę skomplikowane – być może powinna kiedyś powstać osobna, poświęcona tylko mitozie notka). Tylko gdzie tu miejsce na nasze nieszczęsne Ki-67? Ha, w centrum jednej z zagadek nadal czających się pośród mechanizmów sterujących mitozą.


Podkreśliłam wyżej, że istotną częścią najwcześniejszej fazy mitozy jest kondensacja i wyodrębnienie się chromosomów jako oddzielnych struktur (tak by móc je następnie porządnie i po równo porozdzielać pomiędzy komórki potomne). Ale zaraz. Chwila. Co właściwie sprawia, że chromosomy pozostają osobnymi chromosomami zamiast posklejać się w bezkształtną chromatynową masę? W końcu biochemicznie poszczególne chromosomy niczym szczególnym się od siebie nie różnią. Związki odpowiedzialne za ich upakowanie nijak nie są w stanie odróżnić ich od siebie – ot, tu DNA i białka, tam DNA i białka. I tyle. Dlaczego zatem ładne osobne “iksy”, a nie zbity niekształtny kleks sklejony z upakowanych “iksów”? Taaak. To nie będzie dla was niespodzianka. Oczywiście, że tajemniczym antykleksowym czynnikiem będzie nasze tytułowe białko. Bez niego niekształtnym zbitym kleksem właśnie zakończy się próba uporządkowania chromosomów – ładnie widać to na udostępnionym przez Institut für Molekulare Biotechnologie filmiku (komórka po prawej pozbawiona jest właśnie Ki-67).



Otóż Ki-67 (jak widać zresztą na jednym z wcześniejszych obrazków) gromadzi się na powierzchni chromosomów.


Tak szczecinkę z Ki widzą autorzy omówienia pracy Cuylen z najnowszego Nature – http://www.nature.com/nature/journal/vaop/ncurrent/full/nature18904.html

Tak szczecinkę z Ki widzą autorzy omówienia pracy Cuylen z najnowszego Nature – http://www.nature.com/nature/journal/vaop/ncurrent/full/nature18904.html



Ale jeśli przyjrzeć się bliżej, nader istotny okaże się sposób, w jaki się na tej powierzchni gromadzi. Oddajmy w tej kwestii głos Sarze Cuylen, pierwszej autorce publikacji z Nature:

…jeden z końców białka Ki-67 przyciągany jest do chromosomu, podczas gdy drugi odsuwa się od niego. W rezultacie cząsteczki Ki-67 tworzą nieco wydłużone szczecinowate struktury na powierzchni chromosomów – de facto coś w rodzaju oddzielającej chromosomy od siebie bariery.

Pokrywające chromosomowe szczotki włosie tworzone przez cząsteczki Ki-67 trzyma zatem chromosomy na dystans, nie pozwalając im się skleić (czysto mechaniczny efekt szczotki wzmaga tu dodatkowo ładunek elektryczny białka). Im więcej Ki zresztą, tym większy dystans.


Chromosomy pokryte szczeciną z Ki-67; (c)IMBA, http://de.imba.oeaw.ac.at/index.php?id=516
Chromosomy pokryte szczeciną z Ki-67; (c)IMBA, http://de.imba.oeaw.ac.at/index.php?id=516

Co więcej, to wcale jeszcze nie wszystko. Jakby mało było zwykłej tworzonej przez Ki bariery mechanicznej, zespół badawczy wytknął Ki-67 jeszcze jeden dodatkowy aspekt czyniący to białko szczególnie interesującym. Sara Cuylen wspomniała pewną istotną cechę budowy jego cząsteczki – jeden z końców przyciągany miał być do chromatyny (niejako kotwicząc Ki w chromosomie),  drugi – odpychany od niej (z powinowactwem do cytoplazmy). Taka dwoistość cząsteczki, jej amfifilowość, w połączeniu z cechami fizycznymi i ładunkiem elektrycznym białka skojarzyła się ekipie naukowej z surfaktantami, związkami powierzchniowo czynnymi. Takie amfifilne związki mogące jednocześnie oddziaływać ze środowiskami o diametralnie odmiennych cechach potrafią tworzyć na granicy faz warstewki, pęcherzyki, micele, liposomy. I bywają naprawdę istotne biologicznie. Spośród najistotniejszych dla biologii człowieka surfaktantów możecie kojarzyć chociażby ten (składający się z fosfolipidów i wytwarzany przez pneumocyty typu II) zapobiegający zapadaniu się i sklejaniu pęcherzyków płucnych.


A co w tym niezwykłego, że Ki-67 przypomina surfaktanty, skoro wiemy, że organizm może surfaktanty wytwarzać? Cóż, nie spodziewano się, że białka mogą działać w taki sposób także wewnątrzkomórkowo. Posłuchajmy tym razem Daniela Gerlicha z zespołu badawczego:

Wewnątrz komórek zawiera się wiele różnych kompartmentów (przedziałów), które nie są specjalnie wydzielone błonami  i dotąd nie wiedzieliśmy w jaki sposób przedziały te zachowują swoją odrębność przestrzenną. Poszukiwanie kolejnych białek o cechach przypominających surfaktanty i zgłębianie ich potencjalnej roli w utrzymaniu organizacji przestrzennej komórki zapowiada się naprawdę ekscytująco.

Cóż, najfajniejsze badania zawsze prowadzą do dalszych nowych pytań i wyzwań, prawda?


(Przypominam tylko, że patologów możecie śledzić też na fejsbuku – warto tam zaglądać, bo strona jest codziennie aktualizowana)


Literatura:

Ki-67 acts as a biological surfactant to disperse mitotic chromosomes. S Cuylen, C Blaukopf, AZ Politi, T Müller-Reichert, B Neumann, I Poser, J Ellenberg, AA Hyman, DW Gerlich; Nature 2016; 2016 Jun 29; doi: 10.1038/nature18610 [Epub ahead of print]

Cell division: A sticky problem for chromosomes. CP Brangwynne, JF Marko; Nature 2016; 2016 Jun 29; doi:10.1038/nature18904

 



Paulina Łopatniuk


Lekarka ze specjalizacją z patomorfologii, pasjonatka popularyzacji nauki, współtwórczyni strony poświęconej nowinkom naukowym Nauka głupcze, ateistka, feministka. Prowadzi blog naukowy Patolodzy na klatce.

Skomentuj Tipsa en vn Wydrukuj






Nauka

Znalezionych 1478 artykuły.

Tytuł   Autor   Opublikowany

Dlaczego kod genetyczny nie jest uniwersalny   Cobb   2014-10-06
Zachwycający rabuś, który liczy sto milionów lat   Cobb   2014-04-28
Twoja wewnętrzna mucha   Cobb   2014-01-22
Ćma gynandromorf wychodzi na światło dzienne  - opowiada historię o nauce    Cobb   2015-09-15
Seksizm w nauce: czy Watson i Crick naprawdę ukradli dane Rosalind Franklin?   Cobb   2015-07-07
Uroczy wykres, który opowiada naszą historię   Cobb   2017-10-17
12 podstawowych punktów biologii ewolucyjnej   Cobb   2016-03-02
Świat RNA   Cobb   2014-11-27
Jak karakara wygrywa z osami   Cobb   2013-12-29
Seymour Benzer: humor, historia i genetyka   Cobb   2014-03-21
Dlaczego powinny nas fascynować liczące 100 tysięcy lat ludzkie zęby z Chin?   Cobb   2015-10-30
DNA: zoptymalizowany kod źródłowy?   Cobb   2015-11-30
Urodziny Rosalind Franklin!   Cobb   2020-07-31
Wszystkiego najlepszego w dniu 60. urodzin, centralny dogmacie!   Cobb   2017-10-04
Dziwaczne, wysysające krew czerwie jurajskie   Cobb   2014-06-28
Geny neandertalskie są wszędzie   Cobb   2015-10-23
Technologia pomaga w kryzysach wodnych na całym globie   Cohen   2019-04-02
Ptasia grypa w czasach ludzkiej zarazy   Collins   2022-01-11
Oszaleć na punkcie nietoperzy w czasach korony i politykierstwa   Collins   2020-07-25
Oxitec rozszerza próby z komarami GMO, by zredukować szerzenie się malarii   Conrow   2022-04-28
Nigeria daje zielone światło kukurydzy GMO   Conrow   2021-11-22
Rośliny zmodyfikowane: odkłamać opinię o GMO   Conrow   2022-04-07
Bakłażan GMO jest udokumentowaną wygraną ubogich farmerów   Conrow   2021-09-23
Selektywnie stosowana koncepcja tabula rasa i ideologicznie motywowane nieporozumienia   Cory Clark   2019-05-09
Dlaczego zwierzęta są urocze?   Coyne   2014-12-30
Trzecia droga ewolucji? Nie sądzę   Coyne   2015-03-05
Lekcja ewolucji: specjacja w akcji!   Coyne   2015-01-12
Moda na kopanie nauki   Coyne   2014-02-03
Niezwykłe pasikoniki naśladujące liście, u których samce i samice są różnych kolorów   Coyne   2017-01-24
Francis Crick był niesamowitym geniuszem   Coyne   2015-04-02
Ogon ćmy i nietoperze   Coyne   2015-02-23
Skąd bóbr? To są szczuroskoczki, a nie wiewiórki!   Coyne   2017-04-11
Dan Brown - akomodacjonista   Coyne   2015-01-31
Ideologiczna opozycja wobec prawdy biologicznej   Coyne   2016-12-28
Nowe niezwykłe skamieniałości typu “Łupki z Burgess”   Coyne   2014-02-22
Kolejny gatunek wron używa narzędzi   Coyne   2016-10-06
Seks paproci i kreacjoniści   Coyne   2015-03-27
Mistyfikacja Sokala: dwadzieścia lat później   Coyne   2017-01-13
Dobór naturalny w naszym gatunku na przestrzeni ostatnich dwóch tysiącleci   Coyne   2016-10-22
Nowa data udomowienia kotów: około 5300 lat temu – i to w Chinach   Coyne   2013-12-26
Pisklę przypominające wyglądem i zachowaniem trującą gąsienicę   Coyne   2014-12-18
Czy rozum jest “większy niż nauka”? Kiepska próba deprecjonowania nauki   Coyne   2015-04-28
Ewolucyjny poziom ludzkiej przemocy   Coyne   2016-10-14
Ciąg dalszy sporu o dobór grupowy   Coyne   2015-04-22
Eureka! Sprytne wrony to odkryły   Coyne   2014-04-07
Koniec humanistyki?   Coyne   2014-01-15
Nowe skamieniałości: najwcześniejszy na świecie znany ptak   Coyne   2015-05-12
Facet od nauki przeciwko GMO   Coyne   2014-11-12
Najstarsze organizmy: 3,7 miliarda lat?   Coyne   2016-09-13
Montezuma i jego flirty   Coyne   2014-05-11
Specjacja hybryd może być rzadka   Coyne   2016-10-29
Trawa w uchu. Ale po co?   Coyne   2014-07-09
Koszmar kreacjonisty: ewolucja w działaniu   Coyne   2016-09-21
Nowy, opierzony i czteroskrzydły dinosaur   Coyne   2014-07-23
Zmień swoje geny przez zmianę swojego życia   Coyne   2014-05-15
Czy człowiek musiał wyewoluować?   Coyne   2015-05-15
Selektywne używanie narzędzi wśród mrówek   Coyne   2017-01-17
Adam i Ewa: dwoje, czy więcej niż dwoje przodków?   Coyne   2017-01-07
Historia porostów i człowieka, który ją skorygował   Coyne   2017-01-26
Delfiny umyślnie narkotyzują się truciznami rozdymków   Coyne   2014-01-04
Przedwczesna wiadomość o śmierci samolubnego genu   Coyne   2013-12-22
Homo floresiensis, hominin “hobbit”, w Internecie   Coyne   2016-11-25
Modliszka storczykowa: czy upodabnia się do storczyka?   Coyne   2015-03-13
Cuda genetyki: arbuz bez pestek   Coyne   2014-08-25
Pająk upodabnia się do ptasich odchodów   Coyne   2014-06-17
Ewolucja i Bóg   Coyne   2014-01-29
Intelektualne danie dnia  The Big Think   Coyne   2014-03-04
Tajemnica pasków zebry rozwiązana – a przynajmniej tak mówią naukowcy   Coyne   2017-01-31
Mimikra chemiczna u mszyc   Coyne   2015-02-19
Jak często geny przeskakują między gatunkami?   Coyne   2015-04-18
Marnie napisany artykuł o uroczym gryzoniu   Coyne   2014-07-03
Ślepa salamandra z Teksasu ma nerw wzrokowy, ale nie ma prawdziwych oczu   Coyne   2016-10-11
Ukwiał żyje w antarktycznym lodzie!   Coyne   2014-01-25
Żebropławy, czyli dziwactwa ewolucji   Coyne   2013-12-30
OLBRZYMI owad wodny (i kilka innych)   Coyne   2014-07-28
Seksizm w nauce o jaskiniowych owadach   Coyne   2014-04-26
Dobór krewniaczy pozostaje wartościowym narzędziem   Coyne   2015-04-06
Najstarsza jak dotąd identyfikacja medycyny sądowej   Coyne   2014-12-10
Pradawnym płazom odrastały kończyny   Coyne   2014-09-29
Dymorfizm płciowy i ideologia   Coyne   2014-12-01
Bajka o kaczkach karolinkach   Coyne   2016-12-16
Grantowie na Galápagos i ich hybrydowe gatunki   Coyne   2014-08-18
Czy humaniści boją się nauki?   Coyne   2014-02-07
Fantastyczna mimikra tropikalnego pnącza   Coyne   2014-05-03
Nowy opierzony dinozaur sugeruje, że większość dinozaurów miała pióra   Coyne   2014-08-03
Dowody ewolucji: wideo i nieco dłuższy wywód   Coyne   2014-10-22
O pochodzeniu dobra i zła   Coyne   2014-02-05
Genetyka kocich łat   Coyne   2014-11-26
Wierzący nagradzani za życia   Coyne   2014-12-21
Lucy mogła umrzeć spadając z drzewa   Coyne   2016-09-07
Opierzony ogon dinozaura w bursztynie!   Coyne   2016-12-19
Nowa i dziwaczna, zmieniająca kształt żaba   Coyne   2015-04-10
Z nowego artykuły wynika, że istnieje nie jeden, a cztery gatunki żyraf, nie jestem jednak pewien   Coyne   2016-09-27
John van Wyhe obala mity o Darwinie   Coyne   2016-11-09
Ewolucja, ptaki i kwiaty   Coyne   2014-06-02
Pradawne rośliny kwitnące znalezione w bursztynie   Coyne   2014-01-10
Najstarsze żyjące organizmy   Coyne   2014-04-03
Użycie ognia przez homininy: przykład szybkiej ewolucji kulturowej?   Coyne   2021-08-04
Cztery prawa biologii ewolucyjnej   Coyne   2015-10-13
Znaleziono najstarszego “bilaterian”: odkryto podobne do robaka stworzenie wraz z jego skamieniałymi śladami   Coyne   2020-04-16

« Poprzednia strona  Następna strona »
Polecane
artykuły

Lekarze bez Granic


Wojna w Ukrainie


Krytycy Izraela


Walka z malarią


Przedwyborcza kampania


Nowy ateizm


Rzeczywiste łamanie


Jest lepiej


Aburd


Rasy - konstrukt


Zielone energie


Zmiana klimatu


Pogrzebać złudzenia Oslo


Kilka poważnych...


Przeciwko autentyczności


Nowy ateizm


Lomborg


„Choroba” przywrócona przez Putina


„Przebudzeni”


Pod sztandarem


Wielki przekret


Łamanie praw człowieka


Jason Hill


Dlaczego BIden


Korzenie kryzysu energetycznego



Obietnica



Pytanie bez odpowiedzi



Bohaterzy chińskiego narodu



Naukowcy Unii Europejskiej



Teoria Rasy



Przekupieni



Heretycki impuls



Nie klanial



Cervantes



Wojaki Chrystusa


Listy z naszego sadu
Redaktor naczelny:   Hili
Webmaster:   Andrzej Koraszewski
Współpracownicy:   Jacek, , Małgorzata, Andrzej, Henryk