Prawda

Wtorek, 7 maja 2024 - 09:25

« Poprzedni Następny »


Fantastyczne oko przegrzebka pokazane w nowej pracy


Jerry A. Coyne 2017-12-16

Przegrzebek zwyczajnyprzegrzebek wielki (Pecten maximus) – jadalny. Wysoko ceniony pod względem kulinarnym, zaliczany do owoców morza. Występuje w północno-wschodnim Atlantyku – od północnej Norwegii, wzdłuż wybrzeży Europy po Afrykę Północną. Żyje w piaszczystym, żwirowym lub mulistym dnie na różnych głębokościach – od wód bardzo płytkich po głębokie do 250 m.


Osiąga przeciętnie 10–15 cm długości, ale spotykane są osobniki o długości około 20 cm. Górna połówka muszli jest płaska, zwykle czerwonawobrązowa, a dolna wypukła i jasnokremowa lub brązowa. Pecten maximus odżywia się filtrując wodę. Jest obojnakiem (hermafrodytą). Larwy planktoniczne. Tyle wikipedia, która nie informuje jednak, że przegrzebek patrzy.   


Może nie zdajecie sobie sprawy, podobnie jak czytelnik Gregory (który przysłał mi artykuł z “Science”), że przegrzebki mają oczy. Ale naprawdę je mają – aż do 200 maleńkich oczu ustawionych wzdłuż płaszcza, każdy o średnicy milimetra.


Oto jak wygląda ich szereg u przegrzebka Pecten:



I zbliżenie na malutkie, błękitne oczy:


Zbliżenie oczu przegrzebka. Zdjęcie: Dan-Eric Nilsson/Lund University, źródło: New York Times
Zbliżenie oczu przegrzebka. Zdjęcie: Dan-Eric Nilsson/Lund University, źródło: New York Times

Dlaczego je potrzebują? Ponieważ przegrzebki nie są osiadłymi mięczakami: pływają trzepocząc muszlami, żeby uciec przed drapieżnikiem lub znaleźć nowe miejsce na odpoczynek.  Jak tutaj:



Od pewnego czasu było wiadomo, że działa w tych oczach odbicie światła padającego na siatkówkę, ale nie było jasne, jak osiąga się to odbicie, poza tym, że lustrem prawdopodobnie były kryształki guaniny (guanina jest jedną czterech zasad, które stanowią “kod” DNA). Nowy artykuł w “Science” Benjamina Palmera i in. wyjaśnia jednak jak to oko działa i jest to zdumiewające. Lustro, stworzone z nałożonych na siebie warstw kryształków guaniny, odbija światło na siatkówkę, a są tam dwie siatkówki, nie zaś jedna, każda dająca informację o różnej części otoczenia przegrzebka. Lustro, poza bardzo skutecznym działaniem, jest piękne, jest cudem doboru naturalnego.


Najpierw jednak inne zdjęcie (z artykułu) o oczach uszeregowanych na płaszczu (podpisy wszystkich zdjęć pochodzą z artykułu): 


Przegrzebek Pecten maximus z licznymi oczyma uszeregowanymi na płaszczu (biała strzałka pokazuje indywidualne oko)
Przegrzebek Pecten maximus z licznymi oczyma uszeregowanymi na płaszczu (biała strzałka pokazuje indywidualne oko)

A tak działają te oczy. Rysunek „A” poniżej jest wizerunkiem stworzonym przez technikę, która umożliwiła to badanie: niskotemperaturową skaningową mikroskopię elektronową (CSEM), w której skanuje się zamrożoną próbkę. (W tym roku przyznano Nagrodę Nobla w chemii badaczom, którzy stworzyli tę metodę.) To umożliwiło badaczom wizualizację nie tylko całej budowy oka, jak na “A” poniżej, ale także jego przekrojów, mogli więc patrzeć na budowę guaninowych “luster”, jak również robić modele komputerowe tego, jak podróżuje światło po dostaniu się do oka.


Obraz “A” jest analizowany w “B”, z różnymi kolorami przedstawiającymi różne części oka i kierunek światła.  Wpadające światło (czerwone linie) uderzają w lustro (zielone) po przejściu przez  rogówkę (czarne), źrenicę (granatowe), soczewkę (jasnoniebieskie) i przezroczyste siatkówki (szara chmura). Po uderzeniu w lustro promienie światła (teraz żółte) odbijają się od warstw guaniny, padając ostatecznie na obie siatkówki. Jedna siatkówka jest bliższa ciała przegrzebka, druga dalsza:

 


A) Volume rendering of an x-ray micro-CT scan of a whole scallop eye, showing the eye anatomy. (B) Segmentation of the micro-CT in (A). Black, cornea; navy, “iris;” blue, lens; gray, gross retinal volume; green, mirror. Rays traced through the eye from a point source aligned with the axis of the lens (red) are reflected (yellow) and focused on the retina. The border of the best-focused region encompassing all reflected rays denotes a 3D circle of least confusion (COLC; black line). The inset is a side view of the mirror showing the optical axes of the lens (blue), central mirror (green), and center of the visual field (cyan). The lens and mirror axes are offset by 7.3°.
A) Volume rendering of an x-ray micro-CT scan of a whole scallop eye, showing the eye anatomy. (B) Segmentation of the micro-CT in (A). Black, cornea; navy, “iris;” blue, lens; gray, gross retinal volume; green, mirror. Rays traced through the eye from a point source aligned with the axis of the lens (red) are reflected (yellow) and focused on the retina. The border of the best-focused region encompassing all reflected rays denotes a 3D circle of least confusion (COLC; black line). The inset is a side view of the mirror showing the optical axes of the lens (blue), central mirror (green), and center of the visual field (cyan). The lens and mirror axes are offset by 7.3°.

Tutaj jest przekrój oka z oznaczonymi elementami. Widać dwie siatkówki (iii and iv), z wklęsłym lustrem (v) tuż poniżej siatkówek. Ponieważ siatkówki są przezroczyste, nie blokują wpadającego światła. Żółte strzałki wskazują na kierunek światła wpadającego do oka:


Fluorescence microscopy image of an eye cross section, showing the cell nuclei stained with DAPI (4′,6-diamidino-2-phenylindole). The (i) cornea, (ii) lens, (iii) distal retina, (iv) proximal retina, and (v) concave mirror are indicated.
Fluorescence microscopy image of an eye cross section, showing the cell nuclei stained with DAPI (4′,6-diamidino-2-phenylindole). The (i) cornea, (ii) lens, (iii) distal retina, (iv) proximal retina, and (v) concave mirror are indicated.

Tutaj jest zabarwiony przekrój, który ułatwia identyfikację części. Siatkówki są oliwkowozielone a lustro jaskrawozielone: 


Low-resolution cryo-SEM micrograph of an eye cross section after high-pressure freezing and freeze-fracturing. The lens (blue), distal retina (yellow), proximal retina (orange), and concave mirror (green) are shown in pseudo-colors. The cilia and microvilli of the photoreceptors were used to identify the locations of the distal and proximal retinas.
Low-resolution cryo-SEM micrograph of an eye cross section after high-pressure freezing and freeze-fracturing. The lens (blue), distal retina (yellow), proximal retina (orange), and concave mirror (green) are shown in pseudo-colors. The cilia and microvilli of the photoreceptors were used to identify the locations of the distal and proximal retinas.

Naprawdę niezwykłe w tym oku jest to, że “lustro” składa się z “podłogi” z płytek kryształków guaniny w kształcie kwadratów (co nie jest naturalną konfiguracją krystaliczną – jak przegrzebek to robi?). Każda „podłoga” jest taflą i jest ich 20-30 jedna nad drugą, poprzekładane cytoplazmą. Tutaj jest obraz CSEM, czy nie jest to niezwykłe? 


The ultrastructure of the multilayer mirror. (A to C) Cryo-SEM micrographs of high-pressure–frozen, freeze-fractured cross sections through the eye of P. maximus. (A) The mirror viewed perpendicular to the eye axis. White arrow, direction of on-axis incident light. (B) The tiled mirror viewed from above. (C) Crystals in adjacent layers, stacked directly on top of one another, viewed in a fracture through the mirror. (D) TEM micrograph of a single, regular square crystal extracted from the eye. The crystals are 1.23 × 1.23 ± 0.08 μm (N = 20) with internal corner angles of 90.16 ± 2.78° (N = 28) (means ± SD).
The ultrastructure of the multilayer mirror. (A to C) Cryo-SEM micrographs of high-pressure–frozen, freeze-fractured cross sections through the eye of P. maximus. (A) The mirror viewed perpendicular to the eye axis. White arrow, direction of on-axis incident light. (B) The tiled mirror viewed from above. (C) Crystals in adjacent layers, stacked directly on top of one another, viewed in a fracture through the mirror. (D) TEM micrograph of a single, regular square crystal extracted from the eye. The crystals are 1.23 × 1.23 ± 0.08 μm (N = 20) with internal corner angles of 90.16 ± 2.78° (N = 28) (means ± SD).

Nie każda warstwa odbija światło z powrotem na siatkówki; zamiast tego każda warstwa zakrzywia nieco padające na nią światło, a następna warstwa zakrzywia je nieco bardziej i tak dalej, aż sekwencja warstw odwraca światło dokoła i odbija je z powrotem, by skupiło się na siatkówkach (zobacz to wyjaśnienie z Duke University). To jest niezwykły wyczyn doboru naturalnego.


Równie niezwykła jest kalkulacja (z symulacji autorów), że światło najlepiej odbija się w niebiesko-zielonym spectrum: dokładnie tej długości fali światła, jaka dociera na dno morza do środowiska przegrzebków.  


Co więcej, jak sugeruje jeden z autorów modeli, światło z różnych części oka inaczej dociera do tych dwóch siatkówek. Światło wpadające środkiem oka jest kierowane do zewnętrznej siatkówki, podczas gdy światło padające z boków oka idzie do wewnętrznej siatkówki. Tak więc te dwie siatkówki dają informacje o różnych częściach habitatu. Dlaczego miałoby to być użyteczne? Jak sugerują autorzy, peryferyjne widzenie może pomóc przegrzebkowi w kierowaniu jego ruchami podczas pływania i pomóc w znalezieniu nowego miejsca, by osiąść, podczas gdy wizja centralna może dać informację o zbliżającym się drapieżniku.


Wreszcie, dane nadchodzące z różnych oczu zostają zintegrowane i wysłane do “mózgu” przegrzebka lub, jak to opisują autorzy „bocznych płatów zwoju ścienno-trzewnego, miejsca przetwarzania wzrokowego przegrzebków”. Nie ma więc niezależnych danych z każdego oka, co nie jest naprawdę potrzebne, ponieważ siatkówki rozróżniają inne części środowiska przegrzebka.


Lustro odbijające światło na detektor obrazu jest tym właśnie sposobem, na jaki działają teleskopy zwierciadlane, choć skonstruowane przez ludzi lustra bardzo różnią się od luster przegrzebka. Właściwie nie sądzę, by ludzie byli zdolni do wyprodukowania takich luster, jakie robią te małże. Jak kiedyś powiedział Leslie Orgel: ewolucja jest mądrzejsza od ciebie.


h/t: Gregory

__________

Palmer, B. A., G. J. Taylor, V. Brumfeld, D. Gur, M. Shemesh, N. Elad, A. Osherov, D. Oron, S. Weiner, and L. Addadi. 2017. The image-forming mirror in the eye of the scallop. Science 358:1172-1175. (pdf here)


The fantastic eye of the scallop revealed in a new paper

Why Evolution Is True, 4 grudnia 2017

Tłumaczenie: Małgorzata Koraszewska



Jerry A. Coyne


Profesor (emeritus) na wydziale ekologii i ewolucji University of Chicago, jego książka "Why Evolution is True" (Polskie wydanie: "Ewolucja jest faktem", Prószyński i Ska, 2009r.) została przełożona na kilkanaście języków, a przez Richarda Dawkinsa jest oceniana jako najlepsza książka o ewolucji.  Jerry Coyne jest jednym z najlepszych na świecie specjalistów od specjacji, rozdzielania się gatunków.  Jest wielkim miłośnikiem kotów i osobistym przyjacielem redaktor naczelnej.


Skomentuj Tipsa en vn Wydrukuj






Nauka

Znalezionych 1476 artykuły.

Tytuł   Autor   Opublikowany

Dlaczego kod genetyczny nie jest uniwersalny   Cobb   2014-10-06
Zachwycający rabuś, który liczy sto milionów lat   Cobb   2014-04-28
Twoja wewnętrzna mucha   Cobb   2014-01-22
Ćma gynandromorf wychodzi na światło dzienne  - opowiada historię o nauce    Cobb   2015-09-15
Seksizm w nauce: czy Watson i Crick naprawdę ukradli dane Rosalind Franklin?   Cobb   2015-07-07
Uroczy wykres, który opowiada naszą historię   Cobb   2017-10-17
12 podstawowych punktów biologii ewolucyjnej   Cobb   2016-03-02
Świat RNA   Cobb   2014-11-27
Jak karakara wygrywa z osami   Cobb   2013-12-29
Seymour Benzer: humor, historia i genetyka   Cobb   2014-03-21
Dlaczego powinny nas fascynować liczące 100 tysięcy lat ludzkie zęby z Chin?   Cobb   2015-10-30
DNA: zoptymalizowany kod źródłowy?   Cobb   2015-11-30
Urodziny Rosalind Franklin!   Cobb   2020-07-31
Wszystkiego najlepszego w dniu 60. urodzin, centralny dogmacie!   Cobb   2017-10-04
Dziwaczne, wysysające krew czerwie jurajskie   Cobb   2014-06-28
Geny neandertalskie są wszędzie   Cobb   2015-10-23
Technologia pomaga w kryzysach wodnych na całym globie   Cohen   2019-04-02
Ptasia grypa w czasach ludzkiej zarazy   Collins   2022-01-11
Oszaleć na punkcie nietoperzy w czasach korony i politykierstwa   Collins   2020-07-25
Oxitec rozszerza próby z komarami GMO, by zredukować szerzenie się malarii   Conrow   2022-04-28
Nigeria daje zielone światło kukurydzy GMO   Conrow   2021-11-22
Rośliny zmodyfikowane: odkłamać opinię o GMO   Conrow   2022-04-07
Bakłażan GMO jest udokumentowaną wygraną ubogich farmerów   Conrow   2021-09-23
Selektywnie stosowana koncepcja tabula rasa i ideologicznie motywowane nieporozumienia   Cory Clark   2019-05-09
Dlaczego zwierzęta są urocze?   Coyne   2014-12-30
Trzecia droga ewolucji? Nie sądzę   Coyne   2015-03-05
Lekcja ewolucji: specjacja w akcji!   Coyne   2015-01-12
Moda na kopanie nauki   Coyne   2014-02-03
Niezwykłe pasikoniki naśladujące liście, u których samce i samice są różnych kolorów   Coyne   2017-01-24
Francis Crick był niesamowitym geniuszem   Coyne   2015-04-02
Ogon ćmy i nietoperze   Coyne   2015-02-23
Skąd bóbr? To są szczuroskoczki, a nie wiewiórki!   Coyne   2017-04-11
Dan Brown - akomodacjonista   Coyne   2015-01-31
Ideologiczna opozycja wobec prawdy biologicznej   Coyne   2016-12-28
Nowe niezwykłe skamieniałości typu “Łupki z Burgess”   Coyne   2014-02-22
Kolejny gatunek wron używa narzędzi   Coyne   2016-10-06
Seks paproci i kreacjoniści   Coyne   2015-03-27
Mistyfikacja Sokala: dwadzieścia lat później   Coyne   2017-01-13
Dobór naturalny w naszym gatunku na przestrzeni ostatnich dwóch tysiącleci   Coyne   2016-10-22
Nowa data udomowienia kotów: około 5300 lat temu – i to w Chinach   Coyne   2013-12-26
Pisklę przypominające wyglądem i zachowaniem trującą gąsienicę   Coyne   2014-12-18
Czy rozum jest “większy niż nauka”? Kiepska próba deprecjonowania nauki   Coyne   2015-04-28
Ewolucyjny poziom ludzkiej przemocy   Coyne   2016-10-14
Ciąg dalszy sporu o dobór grupowy   Coyne   2015-04-22
Eureka! Sprytne wrony to odkryły   Coyne   2014-04-07
Koniec humanistyki?   Coyne   2014-01-15
Nowe skamieniałości: najwcześniejszy na świecie znany ptak   Coyne   2015-05-12
Facet od nauki przeciwko GMO   Coyne   2014-11-12
Najstarsze organizmy: 3,7 miliarda lat?   Coyne   2016-09-13
Montezuma i jego flirty   Coyne   2014-05-11
Specjacja hybryd może być rzadka   Coyne   2016-10-29
Trawa w uchu. Ale po co?   Coyne   2014-07-09
Koszmar kreacjonisty: ewolucja w działaniu   Coyne   2016-09-21
Nowy, opierzony i czteroskrzydły dinosaur   Coyne   2014-07-23
Zmień swoje geny przez zmianę swojego życia   Coyne   2014-05-15
Czy człowiek musiał wyewoluować?   Coyne   2015-05-15
Selektywne używanie narzędzi wśród mrówek   Coyne   2017-01-17
Adam i Ewa: dwoje, czy więcej niż dwoje przodków?   Coyne   2017-01-07
Historia porostów i człowieka, który ją skorygował   Coyne   2017-01-26
Delfiny umyślnie narkotyzują się truciznami rozdymków   Coyne   2014-01-04
Przedwczesna wiadomość o śmierci samolubnego genu   Coyne   2013-12-22
Homo floresiensis, hominin “hobbit”, w Internecie   Coyne   2016-11-25
Modliszka storczykowa: czy upodabnia się do storczyka?   Coyne   2015-03-13
Cuda genetyki: arbuz bez pestek   Coyne   2014-08-25
Pająk upodabnia się do ptasich odchodów   Coyne   2014-06-17
Ewolucja i Bóg   Coyne   2014-01-29
Intelektualne danie dnia  The Big Think   Coyne   2014-03-04
Tajemnica pasków zebry rozwiązana – a przynajmniej tak mówią naukowcy   Coyne   2017-01-31
Mimikra chemiczna u mszyc   Coyne   2015-02-19
Jak często geny przeskakują między gatunkami?   Coyne   2015-04-18
Marnie napisany artykuł o uroczym gryzoniu   Coyne   2014-07-03
Ślepa salamandra z Teksasu ma nerw wzrokowy, ale nie ma prawdziwych oczu   Coyne   2016-10-11
Ukwiał żyje w antarktycznym lodzie!   Coyne   2014-01-25
Żebropławy, czyli dziwactwa ewolucji   Coyne   2013-12-30
OLBRZYMI owad wodny (i kilka innych)   Coyne   2014-07-28
Seksizm w nauce o jaskiniowych owadach   Coyne   2014-04-26
Dobór krewniaczy pozostaje wartościowym narzędziem   Coyne   2015-04-06
Najstarsza jak dotąd identyfikacja medycyny sądowej   Coyne   2014-12-10
Pradawnym płazom odrastały kończyny   Coyne   2014-09-29
Dymorfizm płciowy i ideologia   Coyne   2014-12-01
Bajka o kaczkach karolinkach   Coyne   2016-12-16
Grantowie na Galápagos i ich hybrydowe gatunki   Coyne   2014-08-18
Czy humaniści boją się nauki?   Coyne   2014-02-07
Fantastyczna mimikra tropikalnego pnącza   Coyne   2014-05-03
Nowy opierzony dinozaur sugeruje, że większość dinozaurów miała pióra   Coyne   2014-08-03
Dowody ewolucji: wideo i nieco dłuższy wywód   Coyne   2014-10-22
O pochodzeniu dobra i zła   Coyne   2014-02-05
Genetyka kocich łat   Coyne   2014-11-26
Wierzący nagradzani za życia   Coyne   2014-12-21
Lucy mogła umrzeć spadając z drzewa   Coyne   2016-09-07
Opierzony ogon dinozaura w bursztynie!   Coyne   2016-12-19
Nowa i dziwaczna, zmieniająca kształt żaba   Coyne   2015-04-10
Z nowego artykuły wynika, że istnieje nie jeden, a cztery gatunki żyraf, nie jestem jednak pewien   Coyne   2016-09-27
John van Wyhe obala mity o Darwinie   Coyne   2016-11-09
Ewolucja, ptaki i kwiaty   Coyne   2014-06-02
Pradawne rośliny kwitnące znalezione w bursztynie   Coyne   2014-01-10
Najstarsze żyjące organizmy   Coyne   2014-04-03
Użycie ognia przez homininy: przykład szybkiej ewolucji kulturowej?   Coyne   2021-08-04
Cztery prawa biologii ewolucyjnej   Coyne   2015-10-13
Znaleziono najstarszego “bilaterian”: odkryto podobne do robaka stworzenie wraz z jego skamieniałymi śladami   Coyne   2020-04-16

« Poprzednia strona  Następna strona »
Polecane
artykuły

Lekarze bez Granic


Wojna w Ukrainie


Krytycy Izraela


Walka z malarią


Przedwyborcza kampania


Nowy ateizm


Rzeczywiste łamanie


Jest lepiej


Aburd


Rasy - konstrukt


Zielone energie


Zmiana klimatu


Pogrzebać złudzenia Oslo


Kilka poważnych...


Przeciwko autentyczności


Nowy ateizm


Lomborg


„Choroba” przywrócona przez Putina


„Przebudzeni”


Pod sztandarem


Wielki przekret


Łamanie praw człowieka


Jason Hill


Dlaczego BIden


Korzenie kryzysu energetycznego



Obietnica



Pytanie bez odpowiedzi



Bohaterzy chińskiego narodu



Naukowcy Unii Europejskiej



Teoria Rasy



Przekupieni



Heretycki impuls



Nie klanial



Cervantes



Wojaki Chrystusa


Listy z naszego sadu
Redaktor naczelny:   Hili
Webmaster:   Andrzej Koraszewski
Współpracownicy:   Jacek, , Małgorzata, Andrzej, Henryk