Prawda

Środa, 15 maja 2024 - 04:02

« Poprzedni Następny »


Chromosom jak szczotka, czyli co robi Ki-67


Paulina Łopatniuk 2016-07-09

Zestawienie najbardziej typowych barwień immunohistochemicznych dla samych tylko nowotworów nerek pochodzenia nabłonkowego; http://www.archivesofpathology.org/doi/pdf/10.5858/arpa.2014-0078-RA
Zestawienie najbardziej typowych barwień immunohistochemicznych dla samych tylko nowotworów nerek pochodzenia nabłonkowego; http://www.archivesofpathology.org/doi/pdf/10.5858/arpa.2014-0078-RA

Praca patologów upływa nie tylko pośród pięknych obrazów mikroskopowych w różu i fiolecie i nie tylko pośród wycinków skórnych czy zwałów jelit (by już nie wspominać o ich zawartości). To też dziesiątki badań dodatkowych – histochemicznych i immunohistochemicznych (rzadziej testów genetycznych), skrótów literowych, białek i białeczek, które trzeba znać, by doprecyzować nasze z różu i fioletu wzięte rozpoznania. Tabele badań dodatkowych typowych dla poszczególnych zmian i kryteria rozpoznań, całe litanie szczegółowych podpunktów niezbędnych do pełnej oceny zaawansowania i złośliwości histologicznej najrozmaitszych nowotworów. Ot, dużo zabawy i niemało klasycznej pamięciówki.

Tak, pamięciówki właśnie, bo nie będę was oszukiwać. Niejednokrotnie niewiele wiemy o samej naturze charakterystycznych dla danych zmian związków, których obecność oceniamy przy pomocy badań immunohistochemicznych. Nawet ci spośród nas, którzy przygotowują się akurat do egzaminów specjalizacyjnych, choć często potrafią wiele z nich wyliczyć i generalnie mają głowy ponapychane niekoniecznie później przydatną w praktyce (ale za to niezwykle przydatną na egzaminach) wiedzą, spojrzą na was dziwnie, jeśli zaczniecie dopytywać, co tak naprawdę kryje się pod niektórymi nazwami czy skrótami i jakie to coś pełni w komórkach funkcje.

Rak przewodowy sutka wybarwiony przeciwciałem przeciwko HER2; CC BY-SA 3.0, autor nieznany, Wikipedia

Rak przewodowy sutka wybarwiony przeciwciałem przeciwko HER2; CC BY-SA 3.0, autor nieznany, Wikipedia



OK, niektóre skróty i nazwy łatwo przypiszemy nie tylko odpowiednim lokalizacjom, ale i funkcjom, jasne. Takie receptory estrogenowe na przykład, ER. To w miarę powszechna wśród lekarzy wiedza, przekładająca się zresztą na klinikę, na leczenie pacjentek z rakiem sutka chociażby. Zresztą samo hasło “receptor” niejako definiuje nam z czym mamy do czynienia. Wyspecjalizowana struktura wiążąca dany czynnik (w tym przypadku estrogeny) i przekazująca dalej związaną z nim informację czy instrukcje. Jeśli wykryjemy receptory estrogenowe w komórkach raka sutka, wiemy, że mamy szansę wpłynąć na przebieg choroby, wzbogacając terapię o preparaty wpływające na te receptory. Jeśli nie, podobne leczenie nie ma sensu – po cóż więc dodatkowo obciążać pacjentkę i budżet? Albo HER2, receptor dla naskórkowego czynnika wzrostu, którego obecność na wystarczająco podwyższonym poziomie również otwiera chorym na raka piersi czy żołądka drogę do dodatkowych opcji terapeutycznych.

Wybarwione na brązowo odpowiednim przeciwciałem CDX2, Białko, Które Barwi Jelito, w gruczolakoraku jelita grubego; CC BY 2.0, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3331835/
Wybarwione na brązowo odpowiednim przeciwciałem CDX2, Białko, Które Barwi Jelito, w gruczolakoraku jelita grubego; CC BY 2.0, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3331835/


Białko, Które barwi Się W Tarczycy, Ale I W Płucu, czyli TTF-1 w przerzucie skórnym raka płuc; CC BY-NC-ND 4.0, http://escholarship.org/uc/item/418498mf
Białko, Które barwi Się W Tarczycy, Ale I W Płucu, czyli TTF-1 w przerzucie skórnym raka płuc; CC BY-NC-ND 4.0, http://escholarship.org/uc/item/418498mf

Obok tego istnieją dziesiątki białek, które kojarzymy dość mgliście, wiedząc – oczywiście – jednocześnie kiedy i w jakim celu należy je zbadać. Ot, takie CDX2 na przykład. Przeciwciało przeciwko CDX2 jest bardzo przydatne. W zestawie z paroma innymi bywa nieocenione, gdy chcemy się upewnić czy dany rak wywodzi się z nabłonka jelitowego (z nabłonka jelita grubego zwłaszcza), ale nie wydaje mi się, by wiedza o tym, co konkretnie CDX2 robi w organizmie była jakoś szczególnie powszechna. Dla większości z nas jest to (właściwie nie tyle “to”, ile przeciwciało przeciwko “temu”) po prostu Białko, Które Barwi Jelito. Podobnie będzie na przykład z TTF1, Białkiem, Które barwi Się W Tarczycy, Ale I W Płucu. I nie, nie jest to żaden zarzut wobec kolegów i koleżanek po fachu. Nie jest to bynajmniej wiedza jakoś szczególnie przydatna w praktyce – tak naprawdę w naszej codziennej pracy musimy wiedzieć “tylko” co, jak i w jakiej sytuacji się wybarwi. I umieć wyciągnąć z tego wnioski. “Dlaczego” bywa tu oczywiście fajnym dodatkowym smaczkiem, ale nie jest niezbędne.


Dużego neoplazja śródnabłonkowa (dysplazja) szyjki macicy, CIN3; na górze typowo wybarwiony obraz, na dole barwienie przeciwko Ki-67 – widać jak intensywnie namnażają się komórki nabłonka; CC BY, https://www.flickr.com/photos/libertasacademica/6946005282/
Dużego neoplazja śródnabłonkowa (dysplazja) szyjki macicy, CIN3; na górze typowo wybarwiony obraz, na dole barwienie przeciwko Ki-67 – widać jak intensywnie namnażają się komórki nabłonka; CC BY, https://www.flickr.com/photos/libertasacademica/6946005282/

Ha, ale właśnie. “Dlaczego” i “co konkretnie robi”, choć nie są pytaniami w pracy patologów niezbędnymi, są jednocześnie tym, co dodaje smaku nieco nudnawym niekiedy niezbędnym w pracy wyliczankom. Poza tym zawsze fajnie jest wiedzieć więcej. Zwłaszcza gdy chodzi o białko tak bardzo dla patologów istotne, jak Ki-67. Najprościej mówiąc, jest Ki-67 markerem proliferacji, czyli mówi nam o tym, że komórki, w których Ki-67 wykrywamy, dzielą się. A że jedną z istotniejszych cech większości nowotworów jest ich niekontrolowane intensywne namnażanie się właśnie, sami na pewno rozumiecie, jak przydatna może być w codziennej pracy możliwość w miarę obiektywnej oceny skali tego namnażania się w poszczególnych zmianach. Pomaga nam to, zależnie od sytuacji, rozpoznawać niektóre nowotwory i zmiany przednowotworowe, odróżniać poszczególne nowotwory od siebie, jak i oceniać jak bardzo agresywnie będzie się dana zmiana zachowywać. Ki-67 jest głównym bohaterem rozlicznych patologicznych tabelek, skal i wytycznych. Nie rozpoznaje się raka neuroendokrynnego przewodu pokarmowego bez wybarwienia preparatów i oceny poziomu tego białka, nie stawia się rozpoznania rakowiaka płuca ani raka drobnokomórkowego. A rak sutka? chłoniaki? glejaki? Ki-67 to nieodłączny towarzysz patologów. Ale patolodzy niewiele wiedzą o swoim immunohistochemicznym przyjacielu. A w każdym razie niewiele wiedzieli.


Choć mamy do czynienia z białkiem opisywanym w patomorfologii od wczesnych lat osiemdziesiątych, tak naprawdę o jego funkcji do zeszłego tygodnia mało mogliśmy powiedzieć, niezależnie od poziomu naszej dociekliwości i dobrych chęci. Co się zatem w zeszłym tygodniu zmieniło? Otóż 29 czerwca czasopismo Nature opublikowało pracę szczegółowo zajmującą się właśnie funkcją Ki-67. Nie mogłam się nie zachwycić. I nie mogłam się nie podzielić.


Niebieskie chromosomy w dzielącej się komórce śródbłonka, a wokół każdego z nich zielonkawa otoczka z Ki-67; Zhiguo.he, Wikipedia, CC BY-SA 4.0
Niebieskie chromosomy w dzielącej się komórce śródbłonka, a wokół każdego z nich zielonkawa otoczka z Ki-67; Zhiguo.he, Wikipedia, CC BY-SA 4.0

Ki-67 jest białkiem, którego (z pewnymi nielicznymi wyjątkami) poszukujemy w jądrze komórkowym. Od jakiegoś czasu wiemy też (a w każdym razie mogą wiedzieć ci, którym chce się trochę za tą wiedzą pogrzebać), że w tym jądrze Ki zwykło lokalizować się na powierzchni chromosomów. Ale po co? Na to pytanie odpowiedzi dostarczyły dopiero Sara Cuylen i Claudia Blaukopf z wiedeńskiego Institut für Molekulare Biotechnologie wraz z resztą ekipy badawczej.


Żeby rzecz wyjaśnić zapewne należałoby się odrobinę cofnąć. Wspomniałam, że Ki-67 układa się podczas podziału komórki na powierzchni chromosomów. Ale czy wiecie czym są chromosomy? Zapewne hasło to wywołuje z pamięci podręcznikowe rządki lub grupki zgrabnych “iksów”, prawda? Czasem uporządkowanych w elegancki zestaw nazywany kariogramem, a przedstawiający komplet chromosomów danej komórki. Prawidłowe skojarzenie. Ale też nie powinniśmy zapominać, że przez większą część życia komórki jej DNA wcale nie jest upakowane w takie zgrabne regularne “iksiki”.


Niejednorodna, nieco ziarnista, struktura chromatyny jądra komórkowego pomiędzy podziałami, po lewej widoczny fragment dzielącego się jądra sąsiedniej komórki z wyraźnie widocznymi chromosomami; JamMan, Wikipedia, domena publiczna.
Niejednorodna, nieco ziarnista, struktura chromatyny jądra komórkowego pomiędzy podziałami, po lewej widoczny fragment dzielącego się jądra sąsiedniej komórki z wyraźnie widocznymi chromosomami; JamMan, Wikipedia, domena publiczna.

Zajmująca pomiędzy ewentualnymi podziałami komórkowymi (w tak zwanej interfazie) jądro komórkowe chromatyna, kompleks DNA i pomagających je upakować białek (pamiętajcie, w takim niewielkim w końcu, kilkumikrometrowej zazwyczaj średnicy, jądrze komórkowym trzeba upchać około dwóch metrów nici DNA), tworzy draperie i festony ciaśniej czy luźniej pozbijanych pętli i zwojów. Pod mikroskopem świetlnym obserwujemy w tym czasie jedynie niejednorodną, mniej czy bardziej ziarnistą, rozproszoną “masę”.



Te pomieszane zwały chromatyny gdy nadchodzi czas podziału komórki, kiedy rozpoczyna się mitoza, kondensują się, przybierając ostatecznie postać zupełnie odrębnych, oddzielonych od siebie struktur, znacznie bardziej zbitych i upakowanych chromosomów. Chromosomy takie (tak, te “iksy” właśnie, które kojarzycie z podręczników) zbudowane są zasadniczo z tych samych składników, co opisane zwoje chromatyny – są tylko ściślej upchnięte. Cały proces zachodzi stopniowo, przechodząc przez kolejne stadia mitozy, od profazy z dopiero wyodrębniającymi się i kondensującymi chromosomami poczynając, po metafazę, w której chromosomy przyjmują swą “kanoniczną” książkową formę i anafazę, gdzie rozdzielają się, tworząc chromosomy potomne, by zakończyć proces podziału komórki telofazą (tak, wiem, to trochę skomplikowane – być może powinna kiedyś powstać osobna, poświęcona tylko mitozie notka). Tylko gdzie tu miejsce na nasze nieszczęsne Ki-67? Ha, w centrum jednej z zagadek nadal czających się pośród mechanizmów sterujących mitozą.


Podkreśliłam wyżej, że istotną częścią najwcześniejszej fazy mitozy jest kondensacja i wyodrębnienie się chromosomów jako oddzielnych struktur (tak by móc je następnie porządnie i po równo porozdzielać pomiędzy komórki potomne). Ale zaraz. Chwila. Co właściwie sprawia, że chromosomy pozostają osobnymi chromosomami zamiast posklejać się w bezkształtną chromatynową masę? W końcu biochemicznie poszczególne chromosomy niczym szczególnym się od siebie nie różnią. Związki odpowiedzialne za ich upakowanie nijak nie są w stanie odróżnić ich od siebie – ot, tu DNA i białka, tam DNA i białka. I tyle. Dlaczego zatem ładne osobne “iksy”, a nie zbity niekształtny kleks sklejony z upakowanych “iksów”? Taaak. To nie będzie dla was niespodzianka. Oczywiście, że tajemniczym antykleksowym czynnikiem będzie nasze tytułowe białko. Bez niego niekształtnym zbitym kleksem właśnie zakończy się próba uporządkowania chromosomów – ładnie widać to na udostępnionym przez Institut für Molekulare Biotechnologie filmiku (komórka po prawej pozbawiona jest właśnie Ki-67).



Otóż Ki-67 (jak widać zresztą na jednym z wcześniejszych obrazków) gromadzi się na powierzchni chromosomów.


Tak szczecinkę z Ki widzą autorzy omówienia pracy Cuylen z najnowszego Nature – http://www.nature.com/nature/journal/vaop/ncurrent/full/nature18904.html

Tak szczecinkę z Ki widzą autorzy omówienia pracy Cuylen z najnowszego Nature – http://www.nature.com/nature/journal/vaop/ncurrent/full/nature18904.html



Ale jeśli przyjrzeć się bliżej, nader istotny okaże się sposób, w jaki się na tej powierzchni gromadzi. Oddajmy w tej kwestii głos Sarze Cuylen, pierwszej autorce publikacji z Nature:

…jeden z końców białka Ki-67 przyciągany jest do chromosomu, podczas gdy drugi odsuwa się od niego. W rezultacie cząsteczki Ki-67 tworzą nieco wydłużone szczecinowate struktury na powierzchni chromosomów – de facto coś w rodzaju oddzielającej chromosomy od siebie bariery.

Pokrywające chromosomowe szczotki włosie tworzone przez cząsteczki Ki-67 trzyma zatem chromosomy na dystans, nie pozwalając im się skleić (czysto mechaniczny efekt szczotki wzmaga tu dodatkowo ładunek elektryczny białka). Im więcej Ki zresztą, tym większy dystans.


Chromosomy pokryte szczeciną z Ki-67; (c)IMBA, http://de.imba.oeaw.ac.at/index.php?id=516
Chromosomy pokryte szczeciną z Ki-67; (c)IMBA, http://de.imba.oeaw.ac.at/index.php?id=516

Co więcej, to wcale jeszcze nie wszystko. Jakby mało było zwykłej tworzonej przez Ki bariery mechanicznej, zespół badawczy wytknął Ki-67 jeszcze jeden dodatkowy aspekt czyniący to białko szczególnie interesującym. Sara Cuylen wspomniała pewną istotną cechę budowy jego cząsteczki – jeden z końców przyciągany miał być do chromatyny (niejako kotwicząc Ki w chromosomie),  drugi – odpychany od niej (z powinowactwem do cytoplazmy). Taka dwoistość cząsteczki, jej amfifilowość, w połączeniu z cechami fizycznymi i ładunkiem elektrycznym białka skojarzyła się ekipie naukowej z surfaktantami, związkami powierzchniowo czynnymi. Takie amfifilne związki mogące jednocześnie oddziaływać ze środowiskami o diametralnie odmiennych cechach potrafią tworzyć na granicy faz warstewki, pęcherzyki, micele, liposomy. I bywają naprawdę istotne biologicznie. Spośród najistotniejszych dla biologii człowieka surfaktantów możecie kojarzyć chociażby ten (składający się z fosfolipidów i wytwarzany przez pneumocyty typu II) zapobiegający zapadaniu się i sklejaniu pęcherzyków płucnych.


A co w tym niezwykłego, że Ki-67 przypomina surfaktanty, skoro wiemy, że organizm może surfaktanty wytwarzać? Cóż, nie spodziewano się, że białka mogą działać w taki sposób także wewnątrzkomórkowo. Posłuchajmy tym razem Daniela Gerlicha z zespołu badawczego:

Wewnątrz komórek zawiera się wiele różnych kompartmentów (przedziałów), które nie są specjalnie wydzielone błonami  i dotąd nie wiedzieliśmy w jaki sposób przedziały te zachowują swoją odrębność przestrzenną. Poszukiwanie kolejnych białek o cechach przypominających surfaktanty i zgłębianie ich potencjalnej roli w utrzymaniu organizacji przestrzennej komórki zapowiada się naprawdę ekscytująco.

Cóż, najfajniejsze badania zawsze prowadzą do dalszych nowych pytań i wyzwań, prawda?


(Przypominam tylko, że patologów możecie śledzić też na fejsbuku – warto tam zaglądać, bo strona jest codziennie aktualizowana)


Literatura:

Ki-67 acts as a biological surfactant to disperse mitotic chromosomes. S Cuylen, C Blaukopf, AZ Politi, T Müller-Reichert, B Neumann, I Poser, J Ellenberg, AA Hyman, DW Gerlich; Nature 2016; 2016 Jun 29; doi: 10.1038/nature18610 [Epub ahead of print]

Cell division: A sticky problem for chromosomes. CP Brangwynne, JF Marko; Nature 2016; 2016 Jun 29; doi:10.1038/nature18904

 



Paulina Łopatniuk


Lekarka ze specjalizacją z patomorfologii, pasjonatka popularyzacji nauki, współtwórczyni strony poświęconej nowinkom naukowym Nauka głupcze, ateistka, feministka. Prowadzi blog naukowy Patolodzy na klatce.

Skomentuj Tipsa en vn Wydrukuj






Nauka

Znalezionych 1478 artykuły.

Tytuł   Autor   Opublikowany

Odmowa szczelinowania jest szaleństwem   Ridley   2022-04-02
Jak wirusy chorób układu oddechowego ewoluują, by stać się łagodniejsze   Ridley   2022-03-22
Czy globalne ocieplenie może być dla nas dobre?   Ridley   2022-03-03
Południowa Afryka powinna przemyśleć regulacje dotyczące genetycznie modyfikowanych roślin   i Priyen Pillay   2022-03-01
Dlaczego środowiskowcy stanowią większą przeszkodę dla skutecznej polityki klimatycznej niż negacjoniści?   Boudry   2022-02-21
O figach i osach   Júnior   2022-02-18
Pień liczący 40 tysięcy lat przekazany Maorysom zamiast nauce   Coyne   2022-02-14
Propaganda anty-GMO obraża drobnych farmerów w Afryce i w Azji   Gakpo   2022-02-08
Jak “tubylcza medycyna” różni się od medycyny   Coyne   2022-02-07
Biotechnologia podnosi plony wysokobiałkowego afrykańskiego pochrzynu   Wetaya   2022-02-04
Spadanie w przepaść   Turski   2022-01-27
Czy koniki morskie coś nam mówią o LGBT? Błąd naturalistyczny popełniony przez Sussex Wildlife Trust   Coyne   2022-01-25
Ojczyznę wolną (od GMO) zachowują pany   Koraszewski   2022-01-22
Namawianie roślin, żeby podjęły ryzyko   Karavolias   2022-01-20
Czy uczenie się metodą prób i błędów jest „nauką”?   Coyne   2022-01-14
Czy gaz i energia jądrowa są “zielone”   Novella   2022-01-12
Ptasia grypa w czasach ludzkiej zarazy   Collins   2022-01-11
Rasa jest kontinuum. Płeć jest cholernie binarna   Dawkins   2022-01-10
Komiczne krzyki o klimatycznej Apokalipsie –— 50 lat nieuzasadnionego siania paniki   Lomborg   2022-01-06
Gnidy, o których PIS ci nie powie   Koraszewski   2022-01-05
Niebezpieczeństwo upolitycznienia nauki   Krylov   2022-01-01
Specjalne przesłanie do muzułmanów na całym świecie   Pandavar   2021-12-28
Nowe badania pokazują, że kraje rozwijające się płacą wysoką cenę za ograniczanie upraw roślin GMO   Maina   2021-12-25
Jajo, które wywołało sensację   Koraszewski   2021-12-24
Pięć powodów zakończenia debaty o GMO   Evanea   2021-12-16
Richard Dawkins pisze do “przyjaciół nauki i rozumu” w Nowej Zelandii   Coyne   2021-12-14
 Syntetyczna biologia oferuje obietnicę rozwiązania globalnego problemu z plastikiem   Agaba   2021-12-13
Nigeria wzywa Afrykę, by szła w jej ślady w sprawie GM wspięgi wężowatej   Opoku Gakpo   2021-12-09
Małe nietoperze idą do przedszkola   Koraszewski   2021-12-06
Afrykańscy naukowcy wzywają do polityki poparcia biologii syntetycznej i innych innowacji   Agaba   2021-12-02
Uprawy GMO zredukowały zatrucia farmerów pestycydami   Maina   2021-11-27
Czy genetyka może pomóc wyeliminować nierówność?   Coyne   2021-11-26
Matematyka i prawdziwa historia katastrofy klimatycznej   Lomborg   2021-11-24
Nigeria daje zielone światło kukurydzy GMO   Conrow   2021-11-22
Ugandyjscy studenci nalegają na powszechne stosowanie biotechnologii i uchwalenie prawa o biobezpieczeństwie   Agaba   2021-11-17
Organiczny eksperyment Sri Lanki   Novella   2021-11-16
Ruanda skwapliwie przyjmuje biotechnologię poprzez ekspansję OFAB   Meeme   2021-11-12
Sprzeciw wobec anulowania Huxleya   Coyne   2021-11-05
Farmerka z Kenii zbiera obfity plon z bawełny GM   Meeme   2021-11-04
Czarni uczeni i nauka o rasizmie   Koraszewski   2021-11-03
Kłusownictwo narzuca na słonie dobór w kierunku ewolucji słoni bez ciosów   Coyne   2021-11-01
Marnujemy naszą wielką szansę na edytowanie genów   Ridely   2021-10-29
“Czarne tygrysy” w małym indyjskim rezerwacie sugerują losowy dryf genetyczny   Coyne   2021-10-26
Wytwarzanie białek w roślinach przez rolnictwo molekularne   Novella   2021-10-20
Strzelby, zarazki, maszyny to zdecydowanie antyrasistowska książka. Dlaczego lewica jej nie kocha?   Barnett   2021-10-13
Nigeryjscy farmerzy nie mogą się doczekać wystarczających ilości GM nasion wspięgi wężowatej   Gakpo   2021-10-12
Dobór płciowy versus dobór naturalny: na przykładzie chrząszczy   Coyne   2021-10-08
Edytowanie genów kluczem do ulepszenia podstawowych upraw w Afryce   Abugu   2021-10-01
Bakłażan GMO jest udokumentowaną wygraną ubogich farmerów   Conrow   2021-09-23
O Jezu, wskrzeszają mamuta!   Koraszewski   2021-09-17
Wszystkie antyizraelskie wiadomości zasługują na publikację   Bard   2021-09-04
Tożsamość etniczna i rasa   Coyne   2021-08-30
Środowiskowcy mylili się – nie stoimy przed apokalipsą owadów   Ridley   2021-08-13
Czy znaleziono najstarszy dowód na istnienie zwierzęcia? Nowa gąbko-podobna skamieniałość liczy 890 milionów lat   Coyne   2021-08-11
Psy rozumieją ludzi   Novella   2021-08-06
Nowy start nauki o życiu w epoce genu   Ridley   2021-08-05
Użycie ognia przez homininy: przykład szybkiej ewolucji kulturowej?   Coyne   2021-08-04
Historia pandemii jest historią zaprzeczania   Jackoby   2021-07-27
Nieuchwytny neuron babci   Novella   2021-07-22
Cierpienie i pytanie, czy przestaniemy jeść mięso   Koraszewski   2021-07-14
Czy nadchodzi hydroponika?   Novella   2021-07-13
Raport Unii Europejskiej o glifosacie   Novella   2021-07-10
Dlaczego ideologii nie należy mieszać z nauką   Coyne   2021-06-30
Nagonka na Izrael grasuje w stowarzyszeniach nauk ścisłych, medycyny i edukacji   Chesler   2021-06-24
Szczęśliwi pracoholicy   Witkowski   2021-06-03
Propaganda w wykonaniu nauczycieli akademickich   Chesler   2021-06-02
Ewolucja wielokomórkowości   Novella   2021-05-07
Polityczna polaryzacja jest przesadzona   Novella   2021-05-04
Wrotki były kiedyś sztandarową grupą istot bez seksu, a teraz sądzi się, że ukradkiem odstawiają szybkie numerki   Coyne   2021-04-22
Błędna historia antykolonializmu   Tupy   2021-04-21
Mayflower wyrusza w podróż raz jeszcze   Koraszewski   2021-04-19
Genetyczny przełącznik CRISPR   Novella   2021-04-16
Wielkie zdarzenie oksydacyjne   Novela   2021-04-09
Kiedy panika klimatyczna zlewa się z kulturą anulowania   Lomborg   2021-04-06
Czy wykształceni ludzie są bardziej antysemiccy?   Albert Cheng i Ian Kingsbury   2021-04-05
Nieoczekiwana historia i cudowny sukces szczepionek   Ridley   2021-03-31
Innowacja jest geograficznie zlokalizowanym i chwilowym zjawiskiem   Ridley   2021-03-29
Czy gąbki są najbliższymi krewnymi pozostałych zwierząt?   Coyne   2021-03-26
Kilka lekcji z rosyjskiej rewolucji. Jak kuszący radykalny nihilizm prowadzi do ekstremizmu   Geifman   2021-03-22
Wracamy do raju?   Łukaszewski   2021-03-18
Ślimakowi morskiemu odrasta tułów z odciętej głowy, czyli “autotomia z kleptoplastią”   Coyne   2021-03-15
Ewolucyjne korzyści udawania ofiary   Clark   2021-03-11
Ludzie i wymieranie megafauny   Novella   2021-03-10
Banany edytowane przez CRISPR   Novella   2021-03-02
Nikczemne grzyby naśladują kwiaty trawy, by ułatwić własne rozmnażanie się   Coyne   2021-02-26
Co zabiło megafaunę Ameryki Północnej?   Novella   2021-02-25
Stresy i nowe szczepy wirusa   Ridley   2021-02-12
EWOLUCJA wirusa Covid-19   Coyne   2021-02-10
Czy „toksyczna kobiecość” jest główną przyczyną bojów o społeczną sprawiedliwość?   Coyne   2021-02-08
Najmniejszy gad (i owodniowiec) świata: BARDZO mały kameleon   Coyne   2021-02-05
Dlaczego kocimiętka i matatabi doprowadzają koty do szaleństwa? Grupa badaczy mówi, że te rośliny mogą chronić je przed komarami   Coyne   2021-02-02
Bądźcie sceptyczni wobec wideo pokazujących “skutki uboczne” szczepionki   Novella   2021-01-28
Szaleństwo odnawialnej energii   Ridley   2021-01-23
Głębia ludzkiej historii   Novella   2021-01-19
Dlaczego szczepionki mRNA mogą zrewolucjonizować medycynę?   Ridley   2021-01-02
Szczepionka mRNA na koronawirusa: świadectwo ludzkiej pomysłowości i mocy nauki   Coyne   2021-01-01
Dziwaczny rodzaj rasistowskiego patriarchatu   Arora   2020-12-31
Centrala muszek owocowych: Bloomington Drosophila Stock Center   Coyne   2020-12-29
Pierwszy raport o używaniu narzędzi przez pszczoły: rodzimy gatunek używa grudek łajna, by odeprzeć drapieżne szerszenie   Coyne   2020-12-23
Nie – żadne chi nie istnieje   Novella   2020-12-21

« Poprzednia strona  Następna strona »
Polecane
artykuły

Lekarze bez Granic


Wojna w Ukrainie


Krytycy Izraela


Walka z malarią


Przedwyborcza kampania


Nowy ateizm


Rzeczywiste łamanie


Jest lepiej


Aburd


Rasy - konstrukt


Zielone energie


Zmiana klimatu


Pogrzebać złudzenia Oslo


Kilka poważnych...


Przeciwko autentyczności


Nowy ateizm


Lomborg


„Choroba” przywrócona przez Putina


„Przebudzeni”


Pod sztandarem


Wielki przekret


Łamanie praw człowieka


Jason Hill


Dlaczego BIden


Korzenie kryzysu energetycznego



Obietnica



Pytanie bez odpowiedzi



Bohaterzy chińskiego narodu



Naukowcy Unii Europejskiej



Teoria Rasy



Przekupieni



Heretycki impuls



Nie klanial



Cervantes



Wojaki Chrystusa


Listy z naszego sadu
Redaktor naczelny:   Hili
Webmaster:   Andrzej Koraszewski
Współpracownicy:   Jacek, , Małgorzata, Andrzej, Henryk