Prawda

Niedziela, 5 maja 2024 - 01:08

« Poprzedni Następny »


Z nowego artykuły wynika, że istnieje nie jeden, a cztery gatunki żyraf, nie jestem jednak pewien


Jerry Coyne 2016-09-27


Żyrafa, Giraffa cameleopardalis, została opisana przez Linneusza i otrzymała nazwę gatunkową od urojonego podobieństwa do bestii hybrydowej (jak notuje Wikipedia, nazwa pochodzi od greckiego καμηλοπάρδαλις”: κάμηλος (kamēlos) czyli “wielbłąd” + πάρδαλις (pardalis) czyli “lampart”, bo ma długą szyję jak wielbłąd i plamki jak lampart). Zawsze była uważana za jeden gatunek, ale podzielony na kilka podgatunków, które żyją na różnych terenach i dają się rozróżnić po wzorach plam na futrze. Tutaj jest dawny opis podgatunków wraz z mapą; proszę zauważyć, że populacje zaliczone do każdego z tych sześciu podgatunków żyją na różnych terenach:



Tutaj jest klasyfikacja dziewięciu podgatunków w oparciu o wzór plam (liczba nazwanych podgatunków waha się między cztery a dziewięć, ale nie szukałem zbyt dokładnie).  



Proszę zauważyć, że ta klasyfikacja jest mniej lub bardziej arbitralna, ponieważ populacje są izolowane geograficznie, a więc nikt nie może użyć klasycznej “biologicznej definicji gatunku (BSC)”, w której członkowie tego samego gatunku mogą krzyżować się w stanie dzikim i mieć płodne potomstwo, podczas gdy członkowie różnych gatunków, kiedy są obecne na tym samym terenie, albo nie krzyżują się ze sobą, albo nie dają płodnych hybryd. Należy też zauważyć, że dla BSC przypuszczalnie różne gatunki (lub ten sam gatunek) muszą zostać „przetestowane”, kiedy żyją w tej samej okolicy („sympatryczność”). Jeśli nie spotykają się w naturze, niewiele można zrobić, by określić BSC.


Sposobem obejścia tego problem jest hybrydyzacja ich w zoo. Jeśli różne „podgatunki” nie krzyżują się ze sobą lub nie mogą stworzyć płodnych hybryd, kiedy krzyżują się w niewoli, niemal z pewnością nie robią tego również na swobodzie i mogą zostać uznane za różne gatunki. Jeśli jednak dwa różne typy krzyżują się i mają płodne potomstwo w niewoli, nie znaczy to, że są członkami tego samego gatunku, bo w naturze inne „bariery izolacyjne”, jak różny czas rui lub oparta na genach awersja do krzyżowania się z innymi typami może je izolować, mimo że te bariery mogą zostać przełamane w sztucznym środowisku w zoo.


Na przykład, “lygrysy“ są hybrydami lwów i tygrysic, które rozsławił film Napoleon Bonaparte. Lwy i tygrysy krzyżują się w niewoli i niektóre lygrysy są płodne. Nie uważamy jednak lwów i tygrysów za członków tego samego gatunku biologicznego, ponieważ gdyby żyły w tym samym miejscu na swobodzie – w Indiach, choć nie są tam już „sympatryczne” – nie powstałyby żadne hybrydy.


Allen Orr i ja omawialiśmy powód używania BSC do badania pochodzenia gatunków w rozdziale 1 naszej książki Speciation (2004), i doszliśmy do wniosku, że jeśli chce się zrozumieć „problem gatunku” – dlaczego zwierzęta i rośliny na danym terenie dzielą się na grupy i nie są po prostu jedną bandą – należy użyć BSC. Jeśli jednak chcesz tylko nazwać gatunki, nie zaś zrozumieć jak powstały odrębne skupiska, to musisz zająć się subiektywną klasyfikacją, jeśli te grupy nie żyją na tym samym obszarze.


I to jest problem z nowym artykułem w “Current Biology” Juliana Fennessy’ego i współautorów (odnośnik i link poniżej). Starali się oni ustalić liczbę gatunków żyrafy, jaka rzeczywiście istnieje, ponieważ jednak populacje żyją w różnych miejscach i nie spotykają się ze sobą (patrz poniżej), muszą używać innego kryterium do ustalenia liczby „gatunków” żyrafy. Używają genetycznej rozbieżności mierzonej przez liczbę różnic w sekwencjach DNA.


Fennessy et al. zsekwencjonowali osiem genów: 7 genów jądrowych oraz mitochondrialny DNA (w praktyce, jeden gen) dziewięciu opisanych uprzednio podgatunków żyrafy. Analiza filogenetyczna sekwencji, pokazana poniżej, wykazała, że populacje dzielą się na cztery wyraźne zgrupowania, które postanowili nazwać „czterema gatunkami”. Tutaj są te gatunki i ich nazwy:

  • żyrafa południowa (Giraffa giraffa),
  • żyrafa Masajów (G. tippelskirchi),
  • żyrafa siatkowana (G. reticulata)
  • żyrafa północna (G. camelopardalis), która obejmuje żyrafę nubijską (G. c. camelopardalis) jako odrębny, ale spokrewniony podgatunek.

Tutaj jest analiza filogenetyczna; kolory populacji odpowiadają kolorom na mapie poniżej (proszę zauważyć, że podgatunki nie zamieszkują tych samych terenów, choć mogły robić to w przeszłości; po prostu nie wiemy, jak było!) Należy też zauważyć, że każdy gatunek jest “monofiletyczny”, zawierający wszystkie osobniki, które pochodzą od tej samej populacji przodków.



Tutaj są niektóre populacja, jakie badali: kolory odpowiadają kolorom na filogenetyce powyżej.


(Z artykułu): Ilustracja 1 Dystrybucja i miejsce pobierania próbek różnych podgatunków żyrafy w Afryce (A) Zasięg dystrybucji (cieniowane kolory) dostarczone przez Giraffe Conservation Foundation [7], naniesione na mapę Afryki (http://www.naturalearthdata.com/). Koła reprezentują miejsca pobierania próbek; kodowanie: patrz ilustracja 2. (B) Powiększony widok region Południowego Sudanu. Proszę zauważyć, że próbki przypuszczalnej żyrafy nubijskiej były pobierane w wschód i zachód od Nilu.
(Z artykułu): Ilustracja 1 Dystrybucja i miejsce pobierania próbek różnych podgatunków żyrafy w Afryce (A) Zasięg dystrybucji (cieniowane kolory) dostarczone przez Giraffe Conservation Foundation [7], naniesione na mapę Afryki (http://www.naturalearthdata.com/). Koła reprezentują miejsca pobierania próbek; kodowanie: patrz ilustracja 2. (B) Powiększony widok region Południowego Sudanu. Proszę zauważyć, że próbki przypuszczalnej żyrafy nubijskiej były pobierane w wschód i zachód od Nilu.

Autorzy dokonują też analizy genetycznej “STRUKTURY”, która zakłada obecność różnych grup (zależnie od tej jak wiele grup przyjmują z góry) i próbują zobaczyć przy pomocy różnic genetycznych, jak odległe od siebie są te grupy. Założenie istnienia zarówno trzech, jak czterech grup (to drugie odpowiadające czterem gatunkom, które nazywają) było najbardziej użyteczne dla żyraf. Na górze ilustracji poniżej widać, jak dobrze zgrupowania są oddzielone przy K (liczba grup) i jak rozdzielenie pogarsza się marginalnie przy założeniu pięciu grup.

 

Także poniżej diagram zgrupowań jest oparty o DNA, szacunek czasu rozejścia się „gatunków” żyrafy, kalibrowany według zapisu kopalnego innych ssaków. Można zobaczyć, że te cztery grupy rozeszły się między 1 a 2 miliony lat temu.



Wszyscy więc wydają się zadowoleni z wniosku, że mamy cztery gatunki żyrafy zamiast jednego.


To znaczy, wszyscy poza Matthew Cobbem i mną. Ale więcej o tym za chwilę.  


Wniosek, że mamy cztery gatunki, zaakceptowało nie tylko pismo “Current Biology”, które opublikowało artykuł (proszę zauważyć tytuł), ale główne media, włącznie z „New York Times”, BBC, pismem „Science” i tak dalej. Nie znalazłem ani słowa krytyki tego wniosku. No więc tutaj jest kilka słów krytyki.


Podzielenie izolowanych geograficznie grup na gatunki jest ćwiczeniem w nazywaniu i klasyfikacji, nie zaś rozumieniem problemu, dlaczego przyroda jest nieciągła – a przez „nieciągłą” rozumiem odpowiedź na fascynujące pytanie: „Dlaczego na jednym obszarze zwierzęta i rośliny podzielone są na odrębne grupy zamiast tworzyć kontinuum?” Używanie miary odległości genetycznej, jak to autorzy zrobili w tej pracy, po prostu mówi nam, jak długo te grupy były oddzielone od siebie, nie zaś, czy pozostałyby odrębne, gdyby spotkały się w naturze. Mówi o historii ewolucyjnej, ale nie o specjacji.


A więc tak, wiemy, że cztery grupy, które nazywają gatunkami, oddzieliły się od siebie 1-2 miliony lat temu i rozwinęły różne ubarwienie futra. Ale „rasy” ludzkie także rozwinęły różne ubarwienie (i inne różnice genetyczne) w okresie około 60-100 tysięcy lat, także w przeważającej mierze w izolowanych grupach. Co prawda populacji ludzi nie można rozróżnić po ich sekwencjach DNA z jednoznacznością choćby zbliżająca się do tych podgatunków żyraf, ale jeśli damy im jeszcze milion lat izolacji geograficznej (co obecnie nie jest możliwe z powodu podróży), mogą rozdzielić się genetycznie w tym samym stopniu, co żyrafy. Czy nazywalibyśmy wtedy populacje ludzkie różnymi „gatunkami”? A gdyby populacja ludzka została izolowana na wyspie przez milion lat i zmieniła kolor włosów i stała się odróżnialna genetycznie przy pomocy sekwencjonowania w większości neutralnych miejsc? Czy powiedzielibyśmy jednoznacznie, że mamy nowy gatunek:  Homo islandensis?


Proszę także zauważyć, że analiza STRUCTURY genetycznej populacji ludzkich pokazuje dość schludny podział na sześć grup (Rosenberg et al. 2002), dobrze odpowiadający 5 regionom geograficznym. (Używanie innych założeń co do liczby grup, z K =  2, 3 i 4 nie daje równie czystego podziału, jak pokazują obszary o mieszanych kolorach). Te grupy są z Afryki, Afryki Wschodniej, Europy + Bliskiego Wschodu, Azji Centralnej/Południowej i z Ameryk.  



Czy mamy tutaj pięć gatunków człowieka, opartych na genetycznym zgrupowaniu? Jak duże różnice genetyczne będą wystarczające, by nazwać te grupy różnymi gatunkami ludzkimi (Te problemy omawiamy w Aneksie Speciation).


Korelacja różnic genetycznych z izolacją geograficzną odzwierciedla – oczywiście – fakt, że populacje, które nie mają szansy wymiany genów, stają się coraz bardziej różne dzięki doborowi naturalnemu i – być może największą siłą w tym wypadku – dryfowi genetycznemu. Jak jednak dużej różnicy potrzeba do postawienia diagnozy „gatunku”? Jest to arbitralne, ponieważ populacje mogą stać się „wzajemnie” monofiletyczne nawet dla jednego genu. W porządku, więc ilu genów potrzeba?


Stwierdzenie, że są cztery genetyczne zgrupowania żyraf jest solidnie podbudowane, ale czy odpowiadają one temu, co biolodzy ewolucyjni nazywają “gatunkami”? Kto wie? Nie wiemy, czy te grupy są izolowane reprodukcyjnie. Nie mogę znaleźć żadnych dowodów, że te grupy kiedykolwiek żyły na tym samym obszarze Afryki w sezonie rozrodczym – lub w jakimkolwiek innym czasie. Ponadto, mogą widocznie krzyżować się w zoo (patrz odnośnik do THE GIRAFFE STUD BOOK; płodności hybryd nie wspominają). Choć więc są to „zgrupowania genetyczne”, nie mamy pojęcia, czy są to gatunki biologiczne.


BBC cytowała z e-maila Matthew, jaki im wysłał, ale pominęli jego zastrzeżenie o izolacji reprodukcyjnej. Oto co napisali w artykule:

Matthew Cobb, profesor zoologii na University of Manchester, wyjaśnił, że “cztery grup żyraf były rozdzielone przez 1-2 milionów lat bez żadnych dowodów na wymianę genów między nimi”.  

A oto czego BBC zdecydowała nie cytować z e-maila Matthew (przytoczone za zgodą):

Definiowanie gatunków jest trudne i ani liczba różnic genetycznych, ani czas, jaki spędziły oddzielnie, niekoniecznie są istotne. Kluczowe jest to, co nazywamy biologicznym pojęciem gatunku – czy krzyżowanie między tymi grupami daje płodne potomstwo? Jeśli nie daje, są one gatunkami. Jeśli mogą stworzyć płodne potomstwo, to nie jest ważne, jak długo nie robiły tego w naturze, nadal nie są prawdziwymi gatunkami. Ten techniczny aspekt jest jednak najmniej ciekawy w tym badaniu. Zamiast tego powinniśmy skupiać się na rozbudowaniu właściwych strategii ochrony dla tych czterech grup zidentyfikowanych w badaniu. Niezależnie od tego, jak będziemy je nazywali, te cztery grupy mają odrębne geny i odrębną historię przez ponad milion lat.

Niemal całkowicie zgadzam się z Matthew, chociaż mam jedno zastrzeżenie. Tak, Fennessy i in. zidentyfikowali grupy, co możemy użyć do ochrony ich – jeśli chcemy chronić różnorodność fenotypową i genetyczną tego, co było kiedyś uważane za jeden gatunek. Ale czy chcemy tego? Ta kwestia nie była poruszona.


Jeśli próbujemy uratować geny koloru futra, no cóż, prawdopodobnie są one w niewielkich ilościach w innych „gatunkach” żyraf i moglibyśmy zrekonstruować każdy wzór przez dobór sztuczny. Jeśli próbujemy uratować różnorodność DNA, z których większość prawdopodobnie dotyczy zasad nukleotydów różniących się między „gatunkami”, ale bez żadnych konsekwencji biologicznych, to dlaczego próbujemy to robić? Chodzi mi o to, że – choć może nie dotarłem do właściwej literatury – nigdy nie widziałem szczegółowej i krytycznej dyskusji o tym, co właściwie konserwacjoniści próbują osiągnąć, kiedy decydują się na zachowanie populacji X, Y i Z. Jak dawno temu powiedział Dick Lewontin, jedna zapłodniona samica w danym gatunku zawiera połowę całej „addytywnej zmienności genetycznej” (podlegającej doborowi zmienności genetycznej dla różnych cech) dla całego gatunku i ten rodzaj ukrytej różnorodności jest prawdopodobnie obecny w kilku lub wszystkich czterech „odrębnych” gatunkach żyrafy. Kiedy mówimy: „musimy uratować wszystkie cztery gatunki żyrafy”, nie zastanawiamy się, co próbujemy uratować. Same populacje? Różnice fenotypowe, które je odróżniają? Czy geny, które je odróżniają? (Moja opinia brzmi, że powinniśmy ratować wszystko po prostu z szacunku dla zwierząt i roślin które były tu przed nami.)


Surowo potraktowałem to badanie, bo sam zajmuję się badaniami gatunków przy użyciu BSC, ale chcę zakończyć powiedzeniem, że badanie Fennessy’ego i in. jest w istocie bardzo dobre, poza ich pewnością, że mamy cztery „gatunki”. Nie omawiają oni trudnego problemu, czym właściwie jest „gatunek” – co Matthew streścił w jednym akapicie. Poza tym Fennessey i in. wykonali wspaniałą robotę. Zidentyfikowali cztery odrębne skupiska genetyczne, co mówi nam o historii ewolucyjnej tych grup i może w ostatecznym rachunku dać klucz do ich stopnia izolacji reprodukcyjnej, jeśli żyrafy przemieszczą się (może z powodu zmiany klimatycznej).  Daje nam także wgląd w to, które grupy były izolowane geograficznie wystarczająco długo, by pozwolić na nagromadzenie się takich różnic genetycznych, a także podnosi kwestie dotyczące biogeografii tych populacji.


Ale na pewno cztery gatunki? Nie umiem powiedzieć. Jestem zdziwiony, że główne pisma naukowe i naukowe działy gazet bezkrytycznie zaakceptowały wnioski autorów.

__________

Fennessy, J. et al. 2016. Multi-locus analyses reveal four giraffe species instead of one.  Current Biology 26:1-7, online doi.org/10.1016/j.cub2016.07.036


A new paper confidently claims that there are four giraffe species rather than one but im not so sure

Why Evolution Is True, 11 września 2016

Tłumaczenie: Małgorzata Koraszewska



Jerry A. Coyne


Profesor (emeritus) na wydziale ekologii i ewolucji University of Chicago, jego książka "Why Evolution is True" (Polskie wydanie: "Ewolucja jest faktem", Prószyński i Ska, 2009r.) została przełożona na kilkanaście języków, a przez Richarda Dawkinsa jest oceniana jako najlepsza książka o ewolucji.  Jerry Coyne jest jednym z najlepszych na świecie specjalistów od specjacji, rozdzielania się gatunków.  Jest wielkim miłośnikiem kotów i osobistym przyjacielem redaktor naczelnej.


Skomentuj Tipsa en vn Wydrukuj






Nauka

Znalezionych 1476 artykuły.

Tytuł   Autor   Opublikowany

Tajemnice życia płodowego   Zimmer   2014-06-07
Czy ludzkość zmierza w kierunku kanibalizmu?   Lomborg   2014-06-09
Milczenie świerszczy   Yong   2014-06-11
Maccartyzm w klimatologii   Lomborg   2014-06-12
Życie w powiększeniu   Zimmer   2014-06-13
Pół miliarda lat samobójstw   Yong   2014-06-14
Amfisbeny   Naskręcki   2014-06-16
Pająk upodabnia się do ptasich odchodów   Coyne   2014-06-17
Tajemny składnik młodej krwi: oksytocyna?   Zimmer   2014-06-18
Architektura żywych budowli   Yong   2014-06-20
Krótko żyjące zwierzęta i bardzo stare rośliny   Zimmer   2014-06-21
Pająki społeczne wybierają swoje kariery   Yong   2014-06-23
Skrzydlata rzeka   Zimmer   2014-06-25
Dziwaczne, wysysające krew czerwie jurajskie   Cobb   2014-06-28
Zaproszenie na wspólne polowanie   Yong   2014-06-30
Marnie napisany artykuł o uroczym gryzoniu   Coyne   2014-07-03
Jak przypadek pomógł znaleźć sposób na suszę   Klein Leichman   2014-07-04
Przespać atak antybiotyku   Yong   2014-07-06
Uprawy GM są dobre dla środowiska     2014-07-08
Trawa w uchu. Ale po co?   Coyne   2014-07-09
Zoo w gębie   Zimmer   2014-07-10
Suplementem diety wampira   Yong   2014-07-11
Seks z wymarłym ludem dał gen życia na wysokości   Yong   2014-07-15
Lot przez przestrzeń wewnętrzną   Zimmer   2014-07-17
Osa, która zatyka wejście do gniazda trupami mrówek   Yong   2014-07-18
Czym jest nauka i dlaczego ma nas obchodzić?   Sokal   2014-07-22
Nowy, opierzony i czteroskrzydły dinosaur   Coyne   2014-07-23
Oglądanie oceanu brzęczącym nosem   Zimmer   2014-07-26
OLBRZYMI owad wodny (i kilka innych)   Coyne   2014-07-28
Najbardziej zdumiewające oczy w przyrodzie   Yong   2014-07-29
Czy jaszczurka “widzi” skórą   Yong   2014-08-02
Nowy opierzony dinozaur sugeruje, że większość dinozaurów miała pióra   Coyne   2014-08-03
Ewolucja łożyska a seksualna zimna wojna   Yong   2014-08-04
Energia odnawialna nie działa   Ridley   2014-08-07
Czy istnieje darwinowskie wyjaśnienie ludzkiej kreatywności?   Dennett   2014-08-08
Gry zespołowe plemników   Yong   2014-08-09
Oko ciemieniowe hatterii   Mayer   2014-08-10
Osobisty mikrobiom w cyfrach   Zimmer   2014-08-14
Izraelska koszulka EKG monitoruje serca, ratuje życie   Shamah   2014-08-17
Grantowie na Galápagos i ich hybrydowe gatunki   Coyne   2014-08-18
Ośmiornica dba o swoje jaja przez 53 miesiące, a potem umiera   Yong   2014-08-20
Cuda genetyki: arbuz bez pestek   Coyne   2014-08-25
Utracony sposób tworzenia ciał przed istnieniem  szkieletów i muszli   Yong   2014-08-26
Usunięcie obrzydzenia z medycyny mikrobiomowej   Zimmer   2014-08-28
Tysiąc współpracujących, samorganizujących się robotów   Yong   2014-08-30
Nogoprządki   Naskręcki   2014-09-01
Drzewo zapachów   Zimmer   2014-09-02
Sposób szczura na trujący pokarm   Yong   2014-09-05
Raczkowanie w ewolucji   Zimmer   2014-09-06
Zmieniająca kolor płachta zainspirowana skórą ośmiornicy   Yong   2014-09-08
Erotyczna doniosłość bioder walenia   Zimmer   2014-09-11
Co słychać w sprawie globalnego ocieplenia?   Ridley   2014-09-14
Foki mogły przenieść gruźlicę do Nowego Świata   Yong   2014-09-16
Jak kolibry odzyskały utracone przez ptaki odczuwanie słodyczy   Yong   2014-09-19
Ochrona zagrożonych węży wymaga ochrony węży jadowitych   Yong   2014-09-22
Uo, zaklinacz deszczu   Naskręcki   2014-09-23
Co wypadające dyski mówią nam o 700 milionach lat ewolucji   Zimmer   2014-09-24
O korzyściach przypadkowego kolekcjonowania okazów   Naskręcki   2014-09-28
Pradawnym płazom odrastały kończyny   Coyne   2014-09-29
Trawienny drapacz chmur   Yong   2014-09-30
Ofiary naszych ułomności   Naskręcki   2014-10-02
Jak dotarliśmy do teraźniejszości   Ridley   2014-10-05
Dlaczego kod genetyczny nie jest uniwersalny   Cobb   2014-10-06
Ukryte przed wzrokiem zoo w Central Park   Zimmer   2014-10-09
Specjacja sympatryczna we wnętrzu cykady   Yong   2014-10-10
Nocny stukot małych kopyt   Naskręcki   2014-10-12
Wojna domowa w ludzkim genomie     2014-10-13
Penetrujący jaskinie robot-wąż wzorowany na grzechotnikach rogatych   Yong   2014-10-19
Dowody ewolucji: wideo i nieco dłuższy wywód   Coyne   2014-10-22
O wyższości lepszego nad gorszym   Zimmer   2014-10-26
Powódź pożyczonych genów u powstania maleńkich ekstremistów   Yong   2014-10-30
Tak, neandertalczycy to my!   Mayer   2014-11-04
Zgarbowate   Naskręcki   2014-11-10
Facet od nauki przeciwko GMO   Coyne   2014-11-12
Figę dostaje ten kto rano wstaje   Yong   2014-11-13
Mrówki, altruizm i poświęcenie   Ridley   2014-11-14
Norowirus: doskonały patogen wyłania się z cienia   Zimmer   2014-11-15
Siedem narzędzi myślenia   Dennett   2014-11-19
Ciężarna wężyca przygotowuje się do macierzyństwa   Yong   2014-11-20
Naturalność życia rodzinnego?   Zimmer   2014-11-25
Genetyka kocich łat   Coyne   2014-11-26
Świat RNA   Cobb   2014-11-27
Dymorfizm płciowy i ideologia   Coyne   2014-12-01
Gdy mutację przeciwstawić infekcji – od anemii sierpowatej do Eboli   Lewis   2014-12-02
Nasze wewnętrzne pióra   Zimmer   2014-12-03
Nie wszystkie muchy latają   Naskręcki   2014-12-04
Jest tuż za tobą! Czy to duch, czy robot?   Yong   2014-12-06
Najstarsza jak dotąd identyfikacja medycyny sądowej   Coyne   2014-12-10
Samoloty bez pilotów i samochody bez kierowców   Ridley   2014-12-11
Tworzenie dowodów w oparciu o politykę   Ridley   2014-12-16
Pisklę przypominające wyglądem i zachowaniem trującą gąsienicę   Coyne   2014-12-18
Wierzący nagradzani za życia   Coyne   2014-12-21
Nietoperze owocożerne także mają sonar (ale niezbyt dobry)   Yong   2014-12-22
Implanty WiFi do mózgu dla rąk robota   Zimmer   2014-12-25
Naukowcy wprowadzają nową tradycję kulturową dzikim sikorkom   Yong   2014-12-26
List do władz Uniwersytetu  Harvarda   Pinker   2014-12-26
Dlaczego zwierzęta są urocze?   Coyne   2014-12-30
Dlaczego te dziwaczne owady sygnalizują ostrzeżenie po ataku?   Yong   2014-12-31
Leniwce i pancerniki widzą czarno-biały świat   Yong   2015-01-06
Ogony CAT osłabiają centralny dogmat – dlaczego ma to znaczenie i dlaczego nie ma   Cobb   2015-01-08

« Poprzednia strona  Następna strona »
Polecane
artykuły

Lekarze bez Granic


Wojna w Ukrainie


Krytycy Izraela


Walka z malarią


Przedwyborcza kampania


Nowy ateizm


Rzeczywiste łamanie


Jest lepiej


Aburd


Rasy - konstrukt


Zielone energie


Zmiana klimatu


Pogrzebać złudzenia Oslo


Kilka poważnych...


Przeciwko autentyczności


Nowy ateizm


Lomborg


„Choroba” przywrócona przez Putina


„Przebudzeni”


Pod sztandarem


Wielki przekret


Łamanie praw człowieka


Jason Hill


Dlaczego BIden


Korzenie kryzysu energetycznego



Obietnica



Pytanie bez odpowiedzi



Bohaterzy chińskiego narodu



Naukowcy Unii Europejskiej



Teoria Rasy



Przekupieni



Heretycki impuls



Nie klanial



Cervantes



Wojaki Chrystusa


Listy z naszego sadu
Redaktor naczelny:   Hili
Webmaster:   Andrzej Koraszewski
Współpracownicy:   Jacek, , Małgorzata, Andrzej, Henryk