Prawda

Sobota, 18 maja 2024 - 21:09

« Poprzedni Następny »


Niech Moc będzie z pszczołą


Athayde Tonhasca Júnior 2022-06-28

Fig.-1Ryc. 1. Elektryzujące spotkanie: dodatnio naładowana pszczoła zbliża się do ujemnie naładowanego kwiatu © Hooven et al ., 2019. Molecules 24, 4458 .

Fig.-1

Ryc. 1. Elektryzujące spotkanie: dodatnio naładowana pszczoła zbliża się do ujemnie naładowanego kwiatu © Hooven et al ., 2019. Molecules 24, 4458 .



Gdy pytają nas, jak pszczoła znajduje kwiat, myślimy o zapachach, kolorach, kształtach i fakturach. Są to ważne sygnały zmysłowe, ale jest jeszcze jeden, którego znaczenie zaczynamy rozumieć: elektryczność.


Dziobak (Ornithorhynchus anatinus), kilka ryb i płazów, a także niektóre mrówki, karaluchy, komary i muszki owocowe mają zdolność wykrywania zewnętrznych pólelektrycznych. Jednak kręgowce potrzebują wody jako ośrodka przewodzącego, podczas gdy większość owadów reaguje tylko na niezwykle silne pola elektryczne, takie jak te generowane przez linie wysokiego napięcia. Trzmiele jednak mają do opowiedzenia błyskotliwą historię.


Od czasu do czasu piorun lub uderzenie drzwi samochodu wstrząsa nami, uświadamiając, że jesteśmy elementami globalnego atmosferycznego obwodu elektrycznego; nasz świat to ogromny silnik elektryczny. W spokojny dzień powietrze jest naładowane dodatnio, podczas gdy powierzchnia ziemi i wszelkie obiekty z nią połączone – w tym rośliny – mają ładunek ujemny. Kwiaty mają więc niewielki ładunek ujemny w stosunku do otaczającego je powietrza. Latające owady doświadczają różnych sił fizycznych: gdy pszczoła bzyczy, elektrony są usuwane z jej ciała przez tarcie z powietrzem, tworząc nadwyżkę ładunków dodatnich. Kiedy pszczoła zbliża się do kwiatu, przyciąga ‘ona’* ujemnie naładowane ziarna pyłku. Ziarna przyklejają się do pszczoły, czasami wyskakując z kwiatka jeszcze przed lądowaniem pszczoły. Te siły elektrostatyczne są bardzo pomocne w zapylaniu.


Ryc. 2. Pyłek przywierający do pszczoły © Ragesoss, Wikimedia Commons.



Moc kwiatów osiąga jednak szokujący poziom dla trzmieli ziemnych (Bombus terrestris) i prawdopodobnie także innych trzmieli: potrafią wyczuć słabe pole elektryczne wokół kwiatu. Nikt nie wie dokładnie, jak to robią, ale muszą być zaangażowane włoski mechanoreceptywne. Te specjalne włoski są unerwione u podstawy, dzięki czemu wykrywają bodźce mechaniczne, takie jak ruch powietrza i dźwięki o niskiej częstotliwości. Najwyraźniej pole elektryczne kwiatu porusza mechanoreceptywnymi włoskami zbliżającej się pszczoły, podobnie jak potarty gumowy balon sprawia, że włosy stają dęba. Ten ruch włosków jest przetwarzany przez centralny układ nerwowy pszczoły i dostarcza informacji o kształcie pola elektrycznego. Działa podobnie jak mistyczna aura Uri Gellera, z tą różnicą, że pszczoła nie jest oszustką, a jej moce nie są mistyczne.


Ryc. 3. Robotnica trzmiela ziemnego z transponderem przymocowanym do grzbietu, by ją śledzić za pomocą radaru © Meadows, 2012. PLoS Biol 10(9): e1001391 .



Rys. 4. Włoski zapewniają izolację termiczną, zbierają pyłki i pomagają pszczołom wyczuwać ruch powietrza, dźwięki i elektryczność © Kevin Mackenzie, University of Aberdeen. Attribution 4.0 International (CC BY 4.0) .

 



Jednak zdolność trzmieli do wykrywania sił elektrycznych może wykraczać poza rozpoznawanie rozmiarów i kształtów kwiatów: mogłyby wykorzystać te informacje, aby zmaksymalizować podróże w poszukiwaniu pożywienia. Gdy trzmiel naładowany dodatnio wyląduje, pole elektryczne kwiatu zmienia się i nie wraca do normy przez około dwie minuty po odlocie trzmiela. Naukowcy uważają, że zmienione pole ostrzega następnego trzmiela, że kwiat jest chwilowo pozbawiony nektaru; to jak wyłączenie neonu „jesteśmy otwarci”. Więc następny trzmiel może równie dobrze polecieć do innego kwiatu z wystarczającym ładunkiem ujemnym i przyzwoitą ilością nektaru.


Pszczoły i inne owady wykrywają światło ultrafioletowe i spolaryzowane oraz wykorzystują pola magnetyczne do nawigacji. Wyczuwanie elektryczności to jeszcze jeden sposób, w jaki ich świat jest odbierany inaczej niż nasz. A związek pszczół z fizyką ma inne ważne implikacje, a niektóre wpływają na nasze zapasy żywności.


W przypadku większości gatunków roślin kwiatowych zapylenie polega na przenoszeniu pyłku z męskich pylników jednego kwiatu na żeńskie znamię drugiego. W przypadku większości tych kwiatów pyłek jest uwalniany przez rozszczepianie się dojrzałych pylników (jest to termin techniczny oznaczający pękanie). Jednak w przypadku około 6% roślin kwitnących na świecie pyłek jest zamknięty w niepękających pylnikach i jest dostępny tylko przez małe otwory – pory lub szczeliny – na ich czubkach. 


Ryc. 5. Po lewej: pręciki składające się z włókien i pylników. André Karwath, Wikimedia Commons. Większość kwiatów uwalnia pyłek przez rozszczepianie pylników wzdłuż linii osłabienia (prawy górny róg); niektóre robią to tylko przez mały otwór lub por (na dole po prawej).



Niekiedy cały kwiat ma układ porowy, tak jak w przypadku pomidora i roślin pokrewnych (Solanum spp.). Pyłek jest ukryty w skupisku zrośniętych pręcików w kształcie stożka i może zostać uwolniony tylko przez pory na czubku. Botanicy mówią, że te kwiaty mają kształt solanoidalny, od nazwy rodzaju rośliny.


Ryc. 6. Kwiaty pomidora © Muffet , Wikimedia Commons.



Pozyskiwanie pyłku ze struktur porowatych nie jest łatwe, ale niektóre pszczoły znają na to sposób. Pszczoła ląduje na jednym z tych kwiatów, gryzie pylnik i owija się wokół niego. Następnie dokonuje szybkich skurczów i rozluźnień mięśni tułowia – tych mięśni, których używa się do latania, ale tutaj skrzydła pozostają nieruchome. Skurcze powodują cykliczne deformacje tułowia, które trwają od ułamków sekundy do kilku sekund: pomyśl o kulturyście, który naprawdę szybko napina mięśnie piersiowe. Ruchy te generują drgania, które są przenoszone na pylniki, powodując, że ziarna pyłku opadają przez pory wierzchołkowe i lądują na ciele pszczoły, przylegając do niego za pomocą sił elektrostatycznych.

 

Ryc. 7. Pszczoła podczas zapylania wibracyjnego © Bob Peterson , Wikimedia Commons.



Ten manewr generuje wysoki dźwięk, dlatego jest znany jest także jako „zapylanie bzyczące”; lub jako „sonikacja” w raportach technicznych. Fizyk lub inżynier mógłby wskazać, że ten mechanizm nie jest ściśle sonikacją, ponieważ to nie dźwięk porusza i wydobywa pyłek, a wibracje pszczoły na kwiatku. Ale „sonikacja” jest terminem powszechnie przyjętym, więc zachowamy go. Trzmiele ( Bombus spp.), pszczoły stolarskie ( Xylocopa spp.) i niektóre inne pszczoły potrafią zapylać wibracyjnie; pszczoły miodne ( Apis spp.) i większość pszczół miesierkowatych ( Megachile spp.) nie. I najwyraźniej tylko samice znają tę sztuczkę;  nigdy nie zaobserwowano samców zapylających wibracyjnie. Zobacz całą sekwencję wydarzeń tutaj(zapylanie wibracyjne od 0:49) i tutaj .


Rośliny z kwiatami posiadającymi pory są rozrzucone po co najmniej 80 rodzinach okrytozalążkowych, co sugeruje, że zapylanie wibracyjne wielokrotnie ewoluowało niezależnie. Prawdopodobnie pomogła w tym gotowość pszczół do bzyczenia z innych powodów, takich jak ostrzeganie wrogów, zagęszczanie materiałów gniazdowych lub chłodzenie/ogrzewanie ich gniazd poprzez uderzanie skrzydłami.


„Syndrom zapylania wibracyjnego”, nazwa nadana temu związkowi roślin i pszczół, to nie tylko biologiczna ciekawostka. Ma to ogromne znaczenie w przypadku upraw takich jak pomidory, maliny, żurawina, jagody, bakłażany, kiwi i papryczki chili. Rośliny te niekoniecznie potrzebują wibracyjnego zapylenia, aby się rozmnażać, ale produkują więcej i lepsze owoce, jeśli są temu poddane, ponieważ przenosi się więcej pyłku i zapładnia więcej zalążków.


Pod koniec lat osiemdziesiątych belgijskie i holenderskie firmy opracowały techniki hodowli na dużą skalę trzmieli ziemnych, najlepszego zapylacza wibracyjnego. Lokalni producenci pomidorów szklarniowych zaczęli zastępować kosztowne mechaniczne zapylacze skrzynkami zawierającymi ule trzmieli i narodził się globalny, wielomilionowy przemysł. Dziś wszystkie zwykłe pomidory kupione w europejskim supermarkecie są zapylane z pomocą komercyjnie hodowanych trzmieli (które przenoszą też choroby na dzikie pszczoły, ale to już inna historia).


Ryc. 8. Komercyjny ul trzmieli używany w szklarniach © Elaine Evans, The Sustainable Agriculture Research and Education.



Możemy widzieć zapylanie jako harmonijny związek, w którym roślina i owad robią wszystko, aby sobie nawzajem pomóc, ale jest to błędnie romantyczne. Pszczoła ma na celu pobranie całego pyłku kwiatowego: zapylanie ma miejsce, ponieważ kilka ziaren zostaje przypadkowo upuszczonych lub startych. A roślina produkuje tak mało nektaru i pyłku, jak to konieczne, aby zachęcić do odwiedzenia kwiatów. Tak więc związek między zapylaczami a kwiatami najlepiej opisać jako wzajemną eksploatację.


Zapylanie wibracyjne zgrabnie pasuje do tego scenariusza. Pylniki z porami zapobiegają nadmiernemu wydatkowi na pyłek, nagradzając tylko kilku specjalistów zbieraczy pyłku, co zwiększa szansę na zapylenie. Rośliny z porami zwykle wydzielają niewiele lub wcale nektaru, ale ich pyłek jest bogaty w białko, co przekonuje pszczołę do trudzenia się bzyczeniem i wibrowaniem, aby uzyskać niewielką dawkę żółtej substancji. To mądra i skuteczna umowa handlowa w świecie owadów zapylających.

—–

*„Ona”, ponieważ pszczela robotnica jest bezpłodną samicą. Płeć u Apis mellifera ma pewne dziwactwa: embriony mogą rozwijać się jako samce poprzez edycję genów; populacje pszczół miodnych (Apis mellifera capensis) rozmnażają się bez samców; niektóre bakterie, takie jak Wolbachia spp. zmieniają płeć swoich gospodarzy stawonogów, w tym Hymenoptera (pszczoły, osy i mrówki). Niemniej jednak ich płeć jest typowo binarna, podobnie jak u Homo sapiens.

—–

Reader’s wildlife tale

Why Evolution Is true, 22 czerwca 2022

Tłumaczenie: Małgorzata Koraszewska


Athayde Tonhasca Júnior jest brytyjskim entomologiem.


Skomentuj Tipsa en vn Wydrukuj






Nauka

Znalezionych 1479 artykuły.

Tytuł   Autor   Opublikowany

Opadający liść, latający smok   Yong   2015-01-10
Nowotwory są konsekwencją wieku, a nie grzechu   Ridley   2015-01-11
Lekcja ewolucji: specjacja w akcji!   Coyne   2015-01-12
Epidemiologia   Feldman   2015-01-13
Aquilops, mały dinozaur, który wiele mógł   Farke   2015-01-15
Mózgi dwudysznych wcale nie są nudne   Farke   2015-01-18
Nasi przyjaźni rozkładacze drożdży   Yong   2015-01-19
Rok 2014 był świetny dla Hupehsuchia   Farke   2015-01-24
Czy mikrobiom może się zbuntować?   Zimmer   2015-01-28
Moje życie zwolennika łagodnego ocieplenia   Ridley   2015-01-29
Dan Brown - akomodacjonista   Coyne   2015-01-31
Towarzyskim małpom w zimie jest cieplej   Yong   2015-02-01
Miejsce dla Hallucigenii   Łopatniuk   2015-02-08
Frankenstein dziś  nie może wyjść i się bawić   Zimmer   2015-02-11
Skaczący DNA i ewolucja ciąży   Yong   2015-02-12
Mitochondrialna donacja jest cudowną możliwością   Ridley   2015-02-13
O pochodzeniu kolorowych twarzy małp   Yong   2015-02-16
Mimikra chemiczna u mszyc   Coyne   2015-02-19
Ogon ćmy i nietoperze   Coyne   2015-02-23
Nasze wewnętrzne wirusy: obecne od 40 milionów lat   Zimmer   2015-02-27
Jak wirus odry stał się mistrzem zarażania   Zimmer   2015-03-01
Łowienie mikrobów u podstaw niedożywienia   Yong   2015-03-03
Astrocyty tworzą nowe neurony po udarze   Łopatniuk   2015-03-04
Trzecia droga ewolucji? Nie sądzę   Coyne   2015-03-05
Nie igraj z odrą   Łopatniuk   2015-03-06
Myszy z wszczepionym ludzkim DNA mają większe mózgi   Yong   2015-03-09
Pasożytnicze osy zarażone kontrolującymi umysł wirusami   Zimmer   2015-03-10
Twój spadek po przodkach, drogi strunowcu   Łopatniuk   2015-03-12
Modliszka storczykowa: czy upodabnia się do storczyka?   Coyne   2015-03-13
Ebola przenoszona drogą kropelkową?   Zimmer   2015-03-17
Woda odskakuje od skóry gekona   Yong   2015-03-19
Czerwonogłowe muchy   Naskręcki   2015-03-22
Porywacze mitochondriów   Łopatniuk   2015-03-23
Jesteśmy błyskawicznymi rozgryzaczami liczb   Zimmer   2015-03-24
Seks paproci i kreacjoniści   Coyne   2015-03-27
Piersi i jajniki, czyli rak i święto błaznów   Łopatniuk   2015-03-28
Walenie po niewłaściwej stronie świata   Zimmer   2015-03-31
Paliwa kopalne nie są wyczerpane, nie są przestarzałe, nie są złe   Ridley   2015-04-01
Francis Crick był niesamowitym geniuszem   Coyne   2015-04-02
Matrioszki, czyli płód w płodzie (fetus in fetu)   Łopatniuk   2015-04-03
Jak ryba łyka pokarm na lądzie?   Yong   2015-04-04
Dobór krewniaczy pozostaje wartościowym narzędziem   Coyne   2015-04-06
Malaria pachnąca cytryną    Zimmer   2015-04-07
Nowotwory sprzed tysiącleci   Łopatniuk   2015-04-08
Nowa i dziwaczna, zmieniająca kształt żaba   Coyne   2015-04-10
Czy mleko matek może odżywiać manipulujące umysłem mikroby?   Yong   2015-04-14
Wczesna aborcja farmakologiczna – skuteczna i bezpieczna, a w Arizonie w dodatku – odwracalna   Łopatniuk   2015-04-15
Małpo ty moja   Koraszewski   2015-04-17
Jak często geny przeskakują między gatunkami?   Coyne   2015-04-18
Młode mysie matki i oksytocyna   Yong   2015-04-21
Ciąg dalszy sporu o dobór grupowy   Coyne   2015-04-22
Jak psy zdobywają nasze serca?   Yong   2015-04-23
Niebo gwiaździste nade mną   Łopatniuk   2015-04-24
Żywotne pytanie   Ridley   2015-04-25
Czy rozum jest “większy niż nauka”? Kiepska próba deprecjonowania nauki   Coyne   2015-04-28
Kiedy Darwin spotkał inną małpę   Zimmer   2015-04-30
Redagowanie ludzkich embrionów: Pierwsze próby   Zimmer   2015-05-04
Robaki i rak   Łopatniuk   2015-05-09
Nowe skamieniałości: najwcześniejszy na świecie znany ptak   Coyne   2015-05-12
Pradawny DNA czyni z prehistorii otwartą książkę   Ridley   2015-05-13
Chiński dinozaur miał skrzydła jak nietoperz i pióra   Yong   2015-05-14
Czy człowiek musiał wyewoluować?   Coyne   2015-05-15
Gigantyczne walenie mają super elastyczne nerwy   Yong   2015-05-18
Znikające badaczki, czyli Sophie Spitz była kobietą   Łopatniuk   2015-05-21
Bambusowi matematycy   Zimmer   2015-05-25
Pierwsza znana ryba ciepłokrwista   Coyne   2015-05-27
Puszek kłębuszek, zdobywca serduszek   Łopatniuk   2015-05-28
Jak powiększyć kapitał naturalny   Ridley   2015-05-30
Symbiotyczna katastrofa długoletniej cykady   Yong   2015-06-02
Przypuszczalnie złamana kość    Coyne   2015-06-04
Tajemnica kangurzych adopcji   Zimmer   2015-06-05
Proszalne mruczenie kota zawiera płacz, dźwięk bardziej naglący i nieprzyjemny niż normalne mruczenie   Coyne   2015-06-09
Jak afrykańskie obszary trawiaste utrzymują tak wiele roślinożernych?   Yong   2015-06-11
Co tam, panie, w anatomii, czyli mózg, naczynia limfatyczne i inne drobiazgi   Łopatniuk   2015-06-13
Uratujmy producentów zombi!   Zimmer   2015-06-15
Mikrob, który dokonał inwazji karaibskich raf koralowych   Yong   2015-06-16
Ekomodernizm i zrównoważona intensyfikacja     2015-06-17
Kości! Wszędzie kości!   Łopatniuk   2015-06-20
Cud? Ryba-piła urodzona z dziewiczej matki   Coyne   2015-06-23
Rozproszony potencjał umysłowy owadów społecznych   Yong   2015-06-27
Jak i dlaczego ta gąsienica gwiżdże?   Coyne   2015-06-30
Co mamy zrobić z neuroróżnorodnością?   Coyne   2015-07-02
Ser z czekoladą, czyli w kuchni u patologów   Łopatniuk   2015-07-04
Nadajniki GPS zapowiadają nową epokę w badaniu zachowań zwierząt   Yong   2015-07-06
Seksizm w nauce: czy Watson i Crick naprawdę ukradli dane Rosalind Franklin?   Cobb   2015-07-07
Pielęgnice z jeziora w Kamerunie prawdopodobnie nie podlegały specjacji sympatrycznej: Część 1   Coyne   2015-07-09
Pielęgnice z jeziora w Kamerunie prawdopodobnie nie podlegały specjacji sympatrycznej: Część  2   Coyne   2015-07-10
Nowotwory spoza pakietu, czyli nie tylko czerniak   Łopatniuk   2015-07-11
Photoshop czy nie photoshop?   Naskręcki   2015-07-13
Gatunki inwazyjne są największym powodem wymierania   Ridley   2015-07-14
Depresja inbredowa u człowieka   Mayer   2015-07-15
Rozmowy między dzbanecznikiem a nietoperzem   Yong   2015-07-16
Zdumiewająca historia dwóch par bliźniąt   Coyne   2015-07-17
Ten chrząszcz niszczy twoją kawę przy pomocy bakterii   Yong   2015-07-22
Co wojny o klimat zrobiły nauce   Ridley   2015-07-23
Zabójcy z bagien   Naskręcki   2015-07-25
Jak olbrzymie krewetki mogą zwalczać chorobę tropikalną i biedę   Yong   2015-07-28
Ostrogony nie są naprawdę “żywymi skamieniałościami”    Coyne   2015-07-29
Czworonożny wąż   Mayer   2015-07-30
Gwałtownie ocieplający się klimat wywołał rewolucję megafauny   Yong   2015-07-31

« Poprzednia strona  Następna strona »
Polecane
artykuły

Lekarze bez Granic


Wojna w Ukrainie


Krytycy Izraela


Walka z malarią


Przedwyborcza kampania


Nowy ateizm


Rzeczywiste łamanie


Jest lepiej


Aburd


Rasy - konstrukt


Zielone energie


Zmiana klimatu


Pogrzebać złudzenia Oslo


Kilka poważnych...


Przeciwko autentyczności


Nowy ateizm


Lomborg


„Choroba” przywrócona przez Putina


„Przebudzeni”


Pod sztandarem


Wielki przekret


Łamanie praw człowieka


Jason Hill


Dlaczego BIden


Korzenie kryzysu energetycznego



Obietnica



Pytanie bez odpowiedzi



Bohaterzy chińskiego narodu



Naukowcy Unii Europejskiej



Teoria Rasy



Przekupieni



Heretycki impuls



Nie klanial



Cervantes



Wojaki Chrystusa


Listy z naszego sadu
Redaktor naczelny:   Hili
Webmaster:   Andrzej Koraszewski
Współpracownicy:   Jacek, , Małgorzata, Andrzej, Henryk