Prawda

Sobota, 18 maja 2024 - 15:16

« Poprzedni Następny »


Ewolucja ukryta w pełnym świetle


Carl Zimmer 2014-01-13


Trudno uwierzyć, że Escherichia coli może mieć jeszcze jakieś sekrety.

Przez ponad stulecie naukowcy rozkładali tego mikroba na kawałki – sekwencjonowali jego geny, rozpracowywali jego kod genetyczny, prowadzili eksperymenty z jego metabolizmem, zdobywając Nagrody Nobla i zamieniając go w najbardziej, zapewne, przebadany organizm w historii.


Jednak mimo tego, że naukowcy nurkują głęboko, jeszcze nie dotarli do dna. Częściowo jest tak dlatego, że Escherichia coli nie jest utrwalona. Nadal ewoluuje i nawet w najstaranniej kontrolowanych eksperymentach, ewolucja produkuje skomplikowaną historię.


Dwadzieścia pięć lat temu Richard Lenski użył jednego mikroba, do stworzenia dwunastu linii bakterii. Karmił każdą linię ubogą dietą glukozową i bakterie przystosowały się do życia w jego laboratorium w Michigan State University. (Tutaj zebrałem kilka artykułów, które napisałem przez te lata o 58 tysiącach pokoleń Long-Term E. coli Evolution Experiment.)


W 2003 r. zespół Lenskiego zorientował się, że zdarzyło się  coś zupełnie niespodziewanego. Jedną z cech charakterystycznych Escherichia coli jako gatunku jest to, że kiedy ma dostęp do tlenu, nie może przyswajać cytrynianu. Pewnego dnia jednak probówka zmętniała od eksplozji E. coli, które właśnie zaczęły go przyswajać. Zmiana była tak głęboka, że może to oznaczać, iż te bakterie wyewoluowały w nowy gatunek.


Przez minione 11 lat naukowcy próbowali rozgryźć problem, jak bakterie zdobyły tę zdolność przyswajania sobie cytrynianu. Na szczęście, rozpoczynając eksperyment, Lenski postanowił zamrażać ewoluujące bakterie co 500 pokoleń. Dzięki temu on i jego współpracownicy mogli „wskrzesić” mikroby-przodków, zsekwencjonować ich genomy i zbadać ich biologię w poszukiwaniu wskazówek.


Przez dwa lata przeglądali zamrożoną historię przyswajania cytrynianu i odkryli ważny krok w tej ewolucji. Dotyczył on genu o nazwie citT.


Gen citT koduje białko, które pozwala E. coli przyswajać cytrynian przy niskich poziomach tlenu. Białko to znajduje się na błonie mikroba i pomaga ściągać cząsteczki cytrynianu ze środowiska. W miarę jednak ściągania cytrynianu, wypompowuje inną cząsteczkę – bursztynian. Wciąganie i wypychanie tych dwóch cząsteczek pomaga utrzymywać równowagę chemiczną komórki.


Mały odcinek DNA obok citT służy jako przełącznik. Jeśli mikrob wykrywa tlen, białko chwyta ten odcinek i zamyka citT. Mikrob nie przyswaja już cytrynianu i zamiast tego odżywia się lepszym źródłem energii, takim jak glukoza.


Naukowcy odkryli, że mniej więcej po 31,5 tysiącach pokoleń mikrob, który kopiował swój DNA w celu podzielenia się, popełnił wielki błąd. Przypadkowo zrobił dodatkową kopię odcinka DNA. Tak się złożyło, że ten odcinek zawierał dwie kopie citT. Mikrob wstawił kopie obok oryginalnej, więc jedna z jego komórek potomnych ma teraz dwie kopie citT.


Ten rodzaj duplikacji genów zdarza sie od czasu do czasu we wszystkim, co żyje. Także ludzki DNA regularnie jest tak kopiowany. Może to prowadzić do ważnych zmian, ponieważ te dwie kopie mogą zacząć robić dwie różne rzeczy. To właśnie zdarzyło się E. coli. W eksperymencie Lenskiego nowa kopia citT wylądowała obok nowego odcinka DNA, który kontroluje geny w inny sposób. Zamiast zamykać gen w obecności tlenu, trzyma je zawsze w stanie aktywności. Dzięki tej mutacji citT bakterie mogły zacząć odżywiać się cytrynianem w pełnym tlenu laboratorium Lenskiego.


Naukowcy odkryli jednak, że ta mutacja jest tylko częścią całej historii. Mutacja citT pozwoliła bakteriom na rośnięcie na cytrynianie, ale tylko powoli. Dopiero po kolejnych 1500 pokoleń odżywiająca się cytrynianem bakteria zaczęła rosnąć wystarczająco szybko, by zdominować swoją probówkę.


Naukowcy odkryli, że podczas tych 1500 pokoleń bakterie popełniły więcej błędów kopiowania, zamieniając nowy gen citT w cztery duplikaty. Te dodatkowe kopie umożliwiły bakteriom produkowanie więcej ściągającego cytrynian białka. Między pokoleniami 31500 a 33 000 powstały jednak inne mutacje i naukowcy nie mieli żadnego sposobu dowiedzenia się, czy one także były ważne.


Okazało się, że historia ma wcześniejszy rozdział. Naukowcy wrócili na sam początek zamrożonego archiwum i odmrozili kilku przodków bakteryjnych. Wstawili wyewoluowane geny citT w przodków i stwierdzili, że mikroby nie potrafiły przyswajać cytrynianu. A więc sam wyewoluowany gen citT nie wystarczał do zamiany mikroba w zjadacza cytrynianu.


Zrobili następnie to samo z bakteriami po 20 tysiącach pokoleń i uzyskali inny rezultat. Kiedy te bardziej wyewoluowane bakterie otrzymały gen citT, potrafiły przyswajać cytrynian. Taki wynik sugerował, że wcześnie w ewolucji bakterii nabyły one mutację, która później pozwoliła im na odżywianie się cytrynianem.


Reasumując: naukowcy mieli teraz historię w trzech częściach. Do pokolenia 31500 była to historia mutacji wstępnych. Potem przyszła wielka duplikacja citT. Następnie przyszły udoskonalające mutacje, które prowadziły do dominacji nad światem w pokoleniu 33000. (Światem, w tym wypadku, była szklana probówka).


Aby odczytać tę historię ze wszystkimi szczegółami, naukowcy musieli zrozumieć porządek, w jakim powstawały wszystkie mutacje, krok po kroku. Musieli także zrozumieć, jak każda mutacja dawała nowy rodzaj organizmu.


Mimo starannie kontrolowanych warunków eksperymentu, był to diabelnie trudny problem. Do czasu, kiedy bakterie wyewoluowały we w pełni odżywiający się cytrynianem rodzaj w pokoleniu 33000, nabyły 79 mutacji, których nie mieli ich przodkowie. Mogły one pomagać wczesnym bakteriom w lepszym wzroście na pożywce z glukozy. Niektóre mogły nie wywierać w ogóle żadnego wpływu na bakterie.



Molekuły wewnątrz bakterii Escherichia coli


Jednym z naukowców badających zjadaczy cytrynianu był doktor Jeffrey Barrick. W 2011 r. przeniósł się na University of Texas i założył własne laboratorium, gdzie kontynuował badania nad zjadaczami cytrynianu, rozwijając nowe metody, by wydobyć historię ich ewolucji.


Wraz z współpracownikami stworzył nową metodę genetycznego modyfikowania bakterii w celu identyfikowania mutacji, które były absolutnie niezbędne do pełnego odżywiania się cytrynianem. Zestawiali części genomu bakterii odżywiających się cytrynianem z genomem przodków i wrzucali te hybrydy na szalki, gdzie był tylko cytrynian do jedzenia.


Większość zagłodziła się na śmierć. Ale kilka urosło. Naukowcy wyłowili hybrydy, które przetrwały i wstawili części ich DNA do bakterii przodków. Runda za rundą eksperymentowania pozwoliła im namierzyć zasadnicze segmenty potrzebne do rośnięcia na cytrynianie. W końcu znaleźli właściwe mutacje.


Było ich dziwacznie mało.


Jeden z wyników nie był wielką niespodzianką. Barrick i jego współpracownicy odkryli, że w celu odżywiania się cytrynianem z maksymalnym apetytem, bakterie potrzebowały kopii ze zmienionymi genami citT.


Ale, jak Barrick informuje w niedawnym artykule, znaleźli tylko jedną jeszcze zasadniczą mutację.


Ta mutacja dotyczy genu o nazwie dctA. Kiedy naukowcy wstawili wyewoluowane wersje citT i dctA w mikroba-przodka, stał się w pełni zjadaczem cytrynianu. Żaden z tych genów nie mógł osiągnąć takiego wyniku bez tego drugiego. I nie potrzeba było żadnego innego genu do tej metamorfozy.


To odkrycie skłoniło naukowców do bliższego przyjrzenia się genowi dctA. Koduje on inne białko błony, które jest odpowiedzialne za pompowanie cząsteczek do wewnątrz i na zewnątrz mikroba. Podczas gdy citT pompuje bursztynian z mikroba, dctA pompuje go do mikroba.


Barrick i jego współpracownicy podejrzewali, że ewolucja nowego rodzaju genu dctA pozwoliła bakterii na utrzymanie podaży bursztynianu, który jest potrzebny, by mogła przyswajać cytrynian. Razem mutacje w citT i dctA zamieniły zmutowane mikroby w zwycięzców.


Co pozostawia rolę wszystkich pozostałych mutacji w mrokach tajemnicy. W nowym badaniu żadna z mutacji, które pojawiły się przed pokoleniem 315000 nie okazała się zasadnicza dla zjadaczy cytrynianu. Nie wykonały w żaden istotny sposób prac wstępnych. Niemniej, poprzednie badania wskazywały, że na coś się zanosiło przed tym pokoleniem.

Przy takich wynikach Barrick i jego współpracownicy mieli niewiele pomysłów na to, co działo się przedtem. Jest możliwe, że dobór naturalny faworyzował jakąś wczesną, tajemniczą mutację, ponieważ pomagała ona bakteriom rosnąć na ich normalnej odżywce z glukozy. Jako produkt uboczny, pomogła zbudować niewielki zapas bursztynianu. Ten bursztynian okazał się być bardzo przydatny później, kiedy mutacji uległ citT. Teraz bakterie miały dosyć bursztynianu (lub jakiejś spokrewnionej cząsteczki) do wypychania, kiedy wciągały cytrynian. Gdyby mutacja citT powstała przed tymi mutacjami, bakterie mogłyby być niezdolne do odżywiania się cytrynianem. A potem przybyła mutacja dctA, gwałtownie przyspieszając odżywianie się cytrynianem.

Skontaktowałem się z Lenskim, który nie był współautorem pracy Barricka, żeby dowiedzieć się, co sądzi on o tych wynikach. „Uwielbiam fakt, że ta praca pokazuje, jak złożona potrafi być ewolucja – odpowiedział – nawet u jednego małego gatunku w malutkim świecie w probówce przez zaledwie dwa dziesięciolecia”.

 (For more on E. coli’s strange scientific history, see my book Microcosm.)

Evolution hidden in plain sight

 

Tłumaczenie M.K.



___________
Carl Zimmer

Wielokrotnie nagradzany amerykański dziennikarz naukowy publikujący często na łamach „New York Times” „National Geographic” i innych pism. Autor 13 książek, w tym „Parasite Rex” oraz „The Tanglend Bank: An introduction to Evolution”. Prowadzi blog The Loom publikowany przy „National Geographic” .

 


Skomentuj Tipsa en vn Wydrukuj






Nauka

Znalezionych 1479 artykuły.

Tytuł   Autor   Opublikowany

Opadający liść, latający smok   Yong   2015-01-10
Nowotwory są konsekwencją wieku, a nie grzechu   Ridley   2015-01-11
Lekcja ewolucji: specjacja w akcji!   Coyne   2015-01-12
Epidemiologia   Feldman   2015-01-13
Aquilops, mały dinozaur, który wiele mógł   Farke   2015-01-15
Mózgi dwudysznych wcale nie są nudne   Farke   2015-01-18
Nasi przyjaźni rozkładacze drożdży   Yong   2015-01-19
Rok 2014 był świetny dla Hupehsuchia   Farke   2015-01-24
Czy mikrobiom może się zbuntować?   Zimmer   2015-01-28
Moje życie zwolennika łagodnego ocieplenia   Ridley   2015-01-29
Dan Brown - akomodacjonista   Coyne   2015-01-31
Towarzyskim małpom w zimie jest cieplej   Yong   2015-02-01
Miejsce dla Hallucigenii   Łopatniuk   2015-02-08
Frankenstein dziś  nie może wyjść i się bawić   Zimmer   2015-02-11
Skaczący DNA i ewolucja ciąży   Yong   2015-02-12
Mitochondrialna donacja jest cudowną możliwością   Ridley   2015-02-13
O pochodzeniu kolorowych twarzy małp   Yong   2015-02-16
Mimikra chemiczna u mszyc   Coyne   2015-02-19
Ogon ćmy i nietoperze   Coyne   2015-02-23
Nasze wewnętrzne wirusy: obecne od 40 milionów lat   Zimmer   2015-02-27
Jak wirus odry stał się mistrzem zarażania   Zimmer   2015-03-01
Łowienie mikrobów u podstaw niedożywienia   Yong   2015-03-03
Astrocyty tworzą nowe neurony po udarze   Łopatniuk   2015-03-04
Trzecia droga ewolucji? Nie sądzę   Coyne   2015-03-05
Nie igraj z odrą   Łopatniuk   2015-03-06
Myszy z wszczepionym ludzkim DNA mają większe mózgi   Yong   2015-03-09
Pasożytnicze osy zarażone kontrolującymi umysł wirusami   Zimmer   2015-03-10
Twój spadek po przodkach, drogi strunowcu   Łopatniuk   2015-03-12
Modliszka storczykowa: czy upodabnia się do storczyka?   Coyne   2015-03-13
Ebola przenoszona drogą kropelkową?   Zimmer   2015-03-17
Woda odskakuje od skóry gekona   Yong   2015-03-19
Czerwonogłowe muchy   Naskręcki   2015-03-22
Porywacze mitochondriów   Łopatniuk   2015-03-23
Jesteśmy błyskawicznymi rozgryzaczami liczb   Zimmer   2015-03-24
Seks paproci i kreacjoniści   Coyne   2015-03-27
Piersi i jajniki, czyli rak i święto błaznów   Łopatniuk   2015-03-28
Walenie po niewłaściwej stronie świata   Zimmer   2015-03-31
Paliwa kopalne nie są wyczerpane, nie są przestarzałe, nie są złe   Ridley   2015-04-01
Francis Crick był niesamowitym geniuszem   Coyne   2015-04-02
Matrioszki, czyli płód w płodzie (fetus in fetu)   Łopatniuk   2015-04-03
Jak ryba łyka pokarm na lądzie?   Yong   2015-04-04
Dobór krewniaczy pozostaje wartościowym narzędziem   Coyne   2015-04-06
Malaria pachnąca cytryną    Zimmer   2015-04-07
Nowotwory sprzed tysiącleci   Łopatniuk   2015-04-08
Nowa i dziwaczna, zmieniająca kształt żaba   Coyne   2015-04-10
Czy mleko matek może odżywiać manipulujące umysłem mikroby?   Yong   2015-04-14
Wczesna aborcja farmakologiczna – skuteczna i bezpieczna, a w Arizonie w dodatku – odwracalna   Łopatniuk   2015-04-15
Małpo ty moja   Koraszewski   2015-04-17
Jak często geny przeskakują między gatunkami?   Coyne   2015-04-18
Młode mysie matki i oksytocyna   Yong   2015-04-21
Ciąg dalszy sporu o dobór grupowy   Coyne   2015-04-22
Jak psy zdobywają nasze serca?   Yong   2015-04-23
Niebo gwiaździste nade mną   Łopatniuk   2015-04-24
Żywotne pytanie   Ridley   2015-04-25
Czy rozum jest “większy niż nauka”? Kiepska próba deprecjonowania nauki   Coyne   2015-04-28
Kiedy Darwin spotkał inną małpę   Zimmer   2015-04-30
Redagowanie ludzkich embrionów: Pierwsze próby   Zimmer   2015-05-04
Robaki i rak   Łopatniuk   2015-05-09
Nowe skamieniałości: najwcześniejszy na świecie znany ptak   Coyne   2015-05-12
Pradawny DNA czyni z prehistorii otwartą książkę   Ridley   2015-05-13
Chiński dinozaur miał skrzydła jak nietoperz i pióra   Yong   2015-05-14
Czy człowiek musiał wyewoluować?   Coyne   2015-05-15
Gigantyczne walenie mają super elastyczne nerwy   Yong   2015-05-18
Znikające badaczki, czyli Sophie Spitz była kobietą   Łopatniuk   2015-05-21
Bambusowi matematycy   Zimmer   2015-05-25
Pierwsza znana ryba ciepłokrwista   Coyne   2015-05-27
Puszek kłębuszek, zdobywca serduszek   Łopatniuk   2015-05-28
Jak powiększyć kapitał naturalny   Ridley   2015-05-30
Symbiotyczna katastrofa długoletniej cykady   Yong   2015-06-02
Przypuszczalnie złamana kość    Coyne   2015-06-04
Tajemnica kangurzych adopcji   Zimmer   2015-06-05
Proszalne mruczenie kota zawiera płacz, dźwięk bardziej naglący i nieprzyjemny niż normalne mruczenie   Coyne   2015-06-09
Jak afrykańskie obszary trawiaste utrzymują tak wiele roślinożernych?   Yong   2015-06-11
Co tam, panie, w anatomii, czyli mózg, naczynia limfatyczne i inne drobiazgi   Łopatniuk   2015-06-13
Uratujmy producentów zombi!   Zimmer   2015-06-15
Mikrob, który dokonał inwazji karaibskich raf koralowych   Yong   2015-06-16
Ekomodernizm i zrównoważona intensyfikacja     2015-06-17
Kości! Wszędzie kości!   Łopatniuk   2015-06-20
Cud? Ryba-piła urodzona z dziewiczej matki   Coyne   2015-06-23
Rozproszony potencjał umysłowy owadów społecznych   Yong   2015-06-27
Jak i dlaczego ta gąsienica gwiżdże?   Coyne   2015-06-30
Co mamy zrobić z neuroróżnorodnością?   Coyne   2015-07-02
Ser z czekoladą, czyli w kuchni u patologów   Łopatniuk   2015-07-04
Nadajniki GPS zapowiadają nową epokę w badaniu zachowań zwierząt   Yong   2015-07-06
Seksizm w nauce: czy Watson i Crick naprawdę ukradli dane Rosalind Franklin?   Cobb   2015-07-07
Pielęgnice z jeziora w Kamerunie prawdopodobnie nie podlegały specjacji sympatrycznej: Część 1   Coyne   2015-07-09
Pielęgnice z jeziora w Kamerunie prawdopodobnie nie podlegały specjacji sympatrycznej: Część  2   Coyne   2015-07-10
Nowotwory spoza pakietu, czyli nie tylko czerniak   Łopatniuk   2015-07-11
Photoshop czy nie photoshop?   Naskręcki   2015-07-13
Gatunki inwazyjne są największym powodem wymierania   Ridley   2015-07-14
Depresja inbredowa u człowieka   Mayer   2015-07-15
Rozmowy między dzbanecznikiem a nietoperzem   Yong   2015-07-16
Zdumiewająca historia dwóch par bliźniąt   Coyne   2015-07-17
Ten chrząszcz niszczy twoją kawę przy pomocy bakterii   Yong   2015-07-22
Co wojny o klimat zrobiły nauce   Ridley   2015-07-23
Zabójcy z bagien   Naskręcki   2015-07-25
Jak olbrzymie krewetki mogą zwalczać chorobę tropikalną i biedę   Yong   2015-07-28
Ostrogony nie są naprawdę “żywymi skamieniałościami”    Coyne   2015-07-29
Czworonożny wąż   Mayer   2015-07-30
Gwałtownie ocieplający się klimat wywołał rewolucję megafauny   Yong   2015-07-31

« Poprzednia strona  Następna strona »
Polecane
artykuły

Lekarze bez Granic


Wojna w Ukrainie


Krytycy Izraela


Walka z malarią


Przedwyborcza kampania


Nowy ateizm


Rzeczywiste łamanie


Jest lepiej


Aburd


Rasy - konstrukt


Zielone energie


Zmiana klimatu


Pogrzebać złudzenia Oslo


Kilka poważnych...


Przeciwko autentyczności


Nowy ateizm


Lomborg


„Choroba” przywrócona przez Putina


„Przebudzeni”


Pod sztandarem


Wielki przekret


Łamanie praw człowieka


Jason Hill


Dlaczego BIden


Korzenie kryzysu energetycznego



Obietnica



Pytanie bez odpowiedzi



Bohaterzy chińskiego narodu



Naukowcy Unii Europejskiej



Teoria Rasy



Przekupieni



Heretycki impuls



Nie klanial



Cervantes



Wojaki Chrystusa


Listy z naszego sadu
Redaktor naczelny:   Hili
Webmaster:   Andrzej Koraszewski
Współpracownicy:   Jacek, , Małgorzata, Andrzej, Henryk