Prawda

Czwartek, 2 maja 2024 - 21:56

« Poprzedni Następny »


Bambusowi matematycy


Carl Zimmer 2015-05-25


 

Pod koniec lat 1960. zakwitł gatunek bambusa o nazwie Phyllostachys bambusoides. Gatunek ten pochodzi z Chin, został sprowadzony do Japonii, a później do Stanów Zjednoczonych i innych krajów. A kiedy mówię, że zakwitł, chodzi mi o to, że zakwitł wszędzie. Lasy tych roślin wybuchły kwiatami równocześnie, mimo że oddzielały je tysiące kilometrów. Jeśli, podobnie jak mnie, ominęło cię to, prawdopodobnie nie dożyjesz, by zobaczyć, jak to dzieje się znowu. Te wspaniałe rośliny bambusa, które potrafią dorosnąć do 22 metrów, wszystkie potem umarły. Ich nasiona wykiełkowały później i stworzyły nowe rośliny. Nowe pokolenia ma obecnie blisko pięćdziesiąt lat i jeszcze nie dało ani jednego kwiatu. Nie zakwitną aż do około roku 2090.


Możemy powiedzieć to z pewnością, ponieważ uczeni chińscy prowadzili bardzo staranne zapisy przez bardzo długi czas. W 999 r. zanotowali kwitnienie Phyllostachys bambusoides. Był to prawdopodobnie zdumiewający widok, bo nikt z żyjących w owym czasie nigdy nie widział, by ten gatunek kwitł. Rośliny bambusa umarły, ich nasiona wykiełkowały i las nie zakwitł znowu aż do 1114 r. Po tym, jak gatunek importowała Japonia, Japończycy zanotowali kwitnienie na początku lat 1700., a potem znowu w 1844 do 1847. Kwitnienie pod koniec lat 1920. był kolejnym kwitnieniem w 120-letnim cyklu.

Ilustracja z 1885 r. pokazująca Chusquea abietifolia, z cyklem kwitnienia 32 lat. Gray Herbarium Library, Harvard University Herbaria
Ilustracja z 1885 r. pokazująca Chusquea abietifolia, z cyklem kwitnienia 32 lat. Gray Herbarium Library, Harvard University Herbaria

Ten niezwykły cykl byłby wystarczająco fascynujący sam w sobie. Okazuje się jednak, że wiele innych gatunków bambusa także ma kwiaty w cyklach trwających dziesięciolecia. Na przykład, gatunek o nazwie Bambusa bambos kwitnie co 32 lata. Phyllostachys nigra f. henonis potrzebuje 60 lat.


Trzech biologów z Harvard zastanowiły te cykle i niedawno postanowili znaleźć wyjaśnienie, jak wyewoluowały. W piśmie “Ecology Letters” przedstawili kuszącą hipotezę:  cykle bambusów osiągnęły te niezwykłe długości dzięki odrobinie prostej arytmetyki.


Jak wszyscy naukowcy, ci biolodzy (Carl Veller, Martin Nowak i Charles Davis) stoją na ramionach olbrzymów. Szczególnie jednego z nich – ekologa Daniela Janzena, który przez lata wyrzucał z siebie z niepokojącą łatwością wielką liczbę kreatywnych, wpływowych pomysłów.


W połowie lat1970. Janzen przedstawił wyjaśnienie dlaczego rośliny bambusa kwitną synchronicznie. Zauważył, że szczury, ptaki, świnie i inne zwierzęta pożerają kolosalne ilości nasion bambusa. Każde pożarte nasienie stanowiło utratę potencjalnego potomka. Jeśli jest wystarczająco dużo zjadaczy nasion i są oni wystarczająco głodni, mogą zlikwidować cały zestaw nasion rośliny bambusa.


Roślinom bambusa może udać się lepiej, twierdził Janzen, jeśli kwitną w tym samym czasie. Przytłaczają wrogów żywnością. Nawet gdyby zwierzęta napychały się do pęknięcia, nadal zostawiłyby nieco ziaren. Te ziarna miałyby wówczas dość czasu, by bronić się twardymi włóknami i gorzkimi substancjami chemicznymi.


Kiedy bambusy raz zaczęły kwitnąć do taktu, trudno byłoby im wyrwać się z tego. Gdyby kilka roślin bambusa zakwitło kilka lat za wcześnie, zwierzęta ucztowałyby na ich nasionach i ich geny, działające nie w takt, nie przeszłyby do kolejnych pokoleń.


Inni naukowcy znaleźli poparcie dla tezy Janzena. Zarzucenie wrogów nasionami rzeczywiście obniża szkody, jakie zjadacze nasion wyrządzają indywidualnej roślinie. Ale Veller i jego koledzy mieli nadal kilka pytań. Jak bambusy początkowo doszły do tego korzystnego cyklu kwitnienia? I jak różne gatunku dotarły do tak długiego – i tak różnego – rytmu kwitnienia?


Naukowcy zbudowali modele matematyczne w oparciu o to, co wiadomo o biologii bambusów. Zaczęli od lasów bambusowych, w których niemal wszystkie rośliny kwitną corocznie, jak to robią niektóre gatunki bambusów.


Ta populacja zawierała jednak kilka mutantów. Miały mutację w genach określających czas kwitnienia, a więc potrzebowały dwóch lat, aby kwitnąć, zamiast jednego roku. Jedne z tych dwuletnich mutantów kwitły w latach parzystych, inne w nieparzystych. Dwuletnia przerwa między kwitnieniami zamiast jednego roku mogła dawać roślinie jakieś korzyści. Roślina miała więcej czasu na zebranie energii ze światła słonecznego, której mogła użyć na wytworzenie większej liczby nasion albo na danie nasionom większej ochrony przed zjadaczami.


Kiedy większa część lasu stawała się roślinami dwuletnimi, mniej roślin wypuszczało nasiona corocznie. W końcu, jak stwierdzili Veller i jego koledzy, nadchodził rok, kiedy roczne rośliny bambusa nie mogły wytworzyć wystarczającej liczby nasion, która przetrwałaby zaborczość zwierząt. Zostały wytępione równocześnie. Jeśli był to rok nieparzysty, to rośliny kwitnące w latach nieparzystych także zniknęły. Jeśli był to rok parzysty, to wymarły rośliny kwitnące w latach parzystych. Tak czy inaczej cały las nagle zsynchronizował kwitnienie raz na dwa lata.


Jest także możliwe, że las miał nie tylko mutanty dwuletnie, ale mutanty, które potrzebowały trzech lub więcej lat, by zakwitnąć. Veller z kolegami odkryli, że w ich modelu matematycznym także rośliny z dłuższymi cyklami kwitnienia mogły przejąć panowanie. To, który cykl wygrywał, było częściowo kwestią przypadku, bo liczba produkowanych w danym roku nasion może zmieniać się w zależności od pogody i innych nieprzewidywalnych czynników. Cały las pozostawał zsynchronizowany niezależnie od tego, który cykl wyłaniał się jako dominujący. Każdy wyjątek, który kwitnął w innych czasie, był likwidowany, tak jak to podejrzewał Janzen.


Istnieje tu jeden wyjątek: mutant bambusa, który wyewoluował nowy cykl będący wielokrotnością pierwotnego cyklu. Wyobraźmy sobie, że bambus kwitnący co dwa lata zamienia się w bambus kwitnący co cztery lata. Za każdym razem, kiedy kwitnie, jest chroniony przez dwuletnie rośliny, które kwitną równocześnie z nim. I ma nad nimi przewagę: może spędzić dodatkowy czas na wytworzenie większej liczby nasion.


Naukowcy stwierdzili, że mimo, iż bambusy kwitnące co cztery lata potrzebują dwukrotnie więcej czasu na wytworzenie nasion, w pewnych warunkach mogą stawać się coraz powszechniejsze z upływem stuleci. W końcu cały las przechodzi na cykl czteroletni.


Badacze odkryli, że bambus nie może ewoluować w odwrotnym kierunku. Jeśli las czteroletni produkuje dwuletniego mutanta, będzie on kwitł w roku, kiedy nie ma żadnej ochrony przez chętnymi zjadaczami. Jedynym kierunkiem, w którym może iść, są dłuższe cykle. Jeśli w czteroletnim lesie powstaje ośmioletni mutant, odnosi on te same korzyści, jakie miały pierwotnie rośliny czteroletnie: jest dobrze chroniony w czasie kwitnienia.


Veller i jego koledzy zdali sobie sprawę z tego, że mogą przetestować ten model. Rozumowali, że przez miliony lat gatunki mnożyły cykle kwitnienia. Jest możliwe, że mogły mnożyć te cykle raczej przez niewielkie liczby niż przez duże. Zamiana dwuletniego cyklu na dwutysiącletni wymagałaby radykalnych zmian biologicznych rośliny. Dlatego lata cyklu bambusa powinny być wynikiem mnożenia małych liczb.


Matematyka bambusa oferuje obiecujące poparcie. Na przykład Phyllostachys bambusoides ma cykl 120 lat, który równa się 5 x 3 x 2 x 2 x 2. Phyllostachys nigra f. henonis ma cykl 60 lat, czyli 5 x 3 x 2 x 2. A 32 letni cykl Bambusa bambos równa się 2 x 2 x 2 x 2 x 2.


Veller et al 2015 Ecology Letters
Veller et al 2015 Ecology Letters

Naukowcy znaleźli więcej poparcia dla tej tezy, kiedy przyjrzeli się ewolucji gatunków bambusa. Tutaj jest drzewo ewolucyjne Phyllostachys bambusoides i jego bliskich krewnych. Jest możliwe, że ich wspólny przodek miał cykl pięcioletni, a potem ten cykl mnożył się przez niewielkie liczby wzdłuż każdej gałęzi drzewa.


Czy jednak może to być rodzaj bezsensownej numerologii bambusowej? Czy jest tylko przypadkiem, że te gatunki pokazują takie eleganckie mnożenia? Veller z kolegami przeprowadzili testy statystyczne na gatunkach bambusów z dobrze udokumentowanymi cyklami kwitnienia. Odkryli, że cykle są ściśle zgromadzone wokół liczb, które dają się podzielić na małe liczby pierwsze. Jest to wzór, którego nie oczekuje się w wyniku przypadku. W rzeczywistości, test daje bardzo silny dowód na mnożenie (dla entuzjastów statystyki: p=0,0041)


Jest bardzo wiele możliwości sprawdzenia tego modelu. Wiele gatunków bambusa ma długie cykle kwitnienia, których nikt zbyt starannie nie mierzył. Naukowcy mogliby zobaczyć, jak nowo badane cykle pasują do modelu Vellera. Jeśli na przykład znajdą nowy gatunek Phyllostachys, który ma cykl 23 lat, byłoby matematycznie niemożliwe, by wyewoluował on z przodka o cyklu pięcioletnim. Jedna rzecz jest jednak pewna. Jeśli ten model wymaga, by naukowcy siedzieli i obserwowali bambus, czekając aż zakwitnie, to do rozstrzygnięcia sprawy będzie potrzeba kilku pokoleń naukowców.


Bamboo Mathematicians

The Loom, 15 maja 2015

Tłumaczenie: Małgorzata Koraszewska



Carl Zimmer


Wielokrotnie nagradzany amerykański dziennikarz naukowy publikujący często na łamach „New York Times” „National Geographic” i innych pism. Autor 13 książek, w tym „Parasite Rex” oraz „The Tanglend Bank: An introduction to Evolution”. Prowadzi blog The Loom publikowany przy „National Geographic”.


Skomentuj Tipsa en vn Wydrukuj






Nauka

Znalezionych 1476 artykuły.

Tytuł   Autor   Opublikowany

Tajemnice życia płodowego   Zimmer   2014-06-07
Czy ludzkość zmierza w kierunku kanibalizmu?   Lomborg   2014-06-09
Milczenie świerszczy   Yong   2014-06-11
Maccartyzm w klimatologii   Lomborg   2014-06-12
Życie w powiększeniu   Zimmer   2014-06-13
Pół miliarda lat samobójstw   Yong   2014-06-14
Amfisbeny   Naskręcki   2014-06-16
Pająk upodabnia się do ptasich odchodów   Coyne   2014-06-17
Tajemny składnik młodej krwi: oksytocyna?   Zimmer   2014-06-18
Architektura żywych budowli   Yong   2014-06-20
Krótko żyjące zwierzęta i bardzo stare rośliny   Zimmer   2014-06-21
Pająki społeczne wybierają swoje kariery   Yong   2014-06-23
Skrzydlata rzeka   Zimmer   2014-06-25
Dziwaczne, wysysające krew czerwie jurajskie   Cobb   2014-06-28
Zaproszenie na wspólne polowanie   Yong   2014-06-30
Marnie napisany artykuł o uroczym gryzoniu   Coyne   2014-07-03
Jak przypadek pomógł znaleźć sposób na suszę   Klein Leichman   2014-07-04
Przespać atak antybiotyku   Yong   2014-07-06
Uprawy GM są dobre dla środowiska     2014-07-08
Trawa w uchu. Ale po co?   Coyne   2014-07-09
Zoo w gębie   Zimmer   2014-07-10
Suplementem diety wampira   Yong   2014-07-11
Seks z wymarłym ludem dał gen życia na wysokości   Yong   2014-07-15
Lot przez przestrzeń wewnętrzną   Zimmer   2014-07-17
Osa, która zatyka wejście do gniazda trupami mrówek   Yong   2014-07-18
Czym jest nauka i dlaczego ma nas obchodzić?   Sokal   2014-07-22
Nowy, opierzony i czteroskrzydły dinosaur   Coyne   2014-07-23
Oglądanie oceanu brzęczącym nosem   Zimmer   2014-07-26
OLBRZYMI owad wodny (i kilka innych)   Coyne   2014-07-28
Najbardziej zdumiewające oczy w przyrodzie   Yong   2014-07-29
Czy jaszczurka “widzi” skórą   Yong   2014-08-02
Nowy opierzony dinozaur sugeruje, że większość dinozaurów miała pióra   Coyne   2014-08-03
Ewolucja łożyska a seksualna zimna wojna   Yong   2014-08-04
Energia odnawialna nie działa   Ridley   2014-08-07
Czy istnieje darwinowskie wyjaśnienie ludzkiej kreatywności?   Dennett   2014-08-08
Gry zespołowe plemników   Yong   2014-08-09
Oko ciemieniowe hatterii   Mayer   2014-08-10
Osobisty mikrobiom w cyfrach   Zimmer   2014-08-14
Izraelska koszulka EKG monitoruje serca, ratuje życie   Shamah   2014-08-17
Grantowie na Galápagos i ich hybrydowe gatunki   Coyne   2014-08-18
Ośmiornica dba o swoje jaja przez 53 miesiące, a potem umiera   Yong   2014-08-20
Cuda genetyki: arbuz bez pestek   Coyne   2014-08-25
Utracony sposób tworzenia ciał przed istnieniem  szkieletów i muszli   Yong   2014-08-26
Usunięcie obrzydzenia z medycyny mikrobiomowej   Zimmer   2014-08-28
Tysiąc współpracujących, samorganizujących się robotów   Yong   2014-08-30
Nogoprządki   Naskręcki   2014-09-01
Drzewo zapachów   Zimmer   2014-09-02
Sposób szczura na trujący pokarm   Yong   2014-09-05
Raczkowanie w ewolucji   Zimmer   2014-09-06
Zmieniająca kolor płachta zainspirowana skórą ośmiornicy   Yong   2014-09-08
Erotyczna doniosłość bioder walenia   Zimmer   2014-09-11
Co słychać w sprawie globalnego ocieplenia?   Ridley   2014-09-14
Foki mogły przenieść gruźlicę do Nowego Świata   Yong   2014-09-16
Jak kolibry odzyskały utracone przez ptaki odczuwanie słodyczy   Yong   2014-09-19
Ochrona zagrożonych węży wymaga ochrony węży jadowitych   Yong   2014-09-22
Uo, zaklinacz deszczu   Naskręcki   2014-09-23
Co wypadające dyski mówią nam o 700 milionach lat ewolucji   Zimmer   2014-09-24
O korzyściach przypadkowego kolekcjonowania okazów   Naskręcki   2014-09-28
Pradawnym płazom odrastały kończyny   Coyne   2014-09-29
Trawienny drapacz chmur   Yong   2014-09-30
Ofiary naszych ułomności   Naskręcki   2014-10-02
Jak dotarliśmy do teraźniejszości   Ridley   2014-10-05
Dlaczego kod genetyczny nie jest uniwersalny   Cobb   2014-10-06
Ukryte przed wzrokiem zoo w Central Park   Zimmer   2014-10-09
Specjacja sympatryczna we wnętrzu cykady   Yong   2014-10-10
Nocny stukot małych kopyt   Naskręcki   2014-10-12
Wojna domowa w ludzkim genomie     2014-10-13
Penetrujący jaskinie robot-wąż wzorowany na grzechotnikach rogatych   Yong   2014-10-19
Dowody ewolucji: wideo i nieco dłuższy wywód   Coyne   2014-10-22
O wyższości lepszego nad gorszym   Zimmer   2014-10-26
Powódź pożyczonych genów u powstania maleńkich ekstremistów   Yong   2014-10-30
Tak, neandertalczycy to my!   Mayer   2014-11-04
Zgarbowate   Naskręcki   2014-11-10
Facet od nauki przeciwko GMO   Coyne   2014-11-12
Figę dostaje ten kto rano wstaje   Yong   2014-11-13
Mrówki, altruizm i poświęcenie   Ridley   2014-11-14
Norowirus: doskonały patogen wyłania się z cienia   Zimmer   2014-11-15
Siedem narzędzi myślenia   Dennett   2014-11-19
Ciężarna wężyca przygotowuje się do macierzyństwa   Yong   2014-11-20
Naturalność życia rodzinnego?   Zimmer   2014-11-25
Genetyka kocich łat   Coyne   2014-11-26
Świat RNA   Cobb   2014-11-27
Dymorfizm płciowy i ideologia   Coyne   2014-12-01
Gdy mutację przeciwstawić infekcji – od anemii sierpowatej do Eboli   Lewis   2014-12-02
Nasze wewnętrzne pióra   Zimmer   2014-12-03
Nie wszystkie muchy latają   Naskręcki   2014-12-04
Jest tuż za tobą! Czy to duch, czy robot?   Yong   2014-12-06
Najstarsza jak dotąd identyfikacja medycyny sądowej   Coyne   2014-12-10
Samoloty bez pilotów i samochody bez kierowców   Ridley   2014-12-11
Tworzenie dowodów w oparciu o politykę   Ridley   2014-12-16
Pisklę przypominające wyglądem i zachowaniem trującą gąsienicę   Coyne   2014-12-18
Wierzący nagradzani za życia   Coyne   2014-12-21
Nietoperze owocożerne także mają sonar (ale niezbyt dobry)   Yong   2014-12-22
Implanty WiFi do mózgu dla rąk robota   Zimmer   2014-12-25
Naukowcy wprowadzają nową tradycję kulturową dzikim sikorkom   Yong   2014-12-26
List do władz Uniwersytetu  Harvarda   Pinker   2014-12-26
Dlaczego zwierzęta są urocze?   Coyne   2014-12-30
Dlaczego te dziwaczne owady sygnalizują ostrzeżenie po ataku?   Yong   2014-12-31
Leniwce i pancerniki widzą czarno-biały świat   Yong   2015-01-06
Ogony CAT osłabiają centralny dogmat – dlaczego ma to znaczenie i dlaczego nie ma   Cobb   2015-01-08

« Poprzednia strona  Następna strona »
Polecane
artykuły

Lekarze bez Granic


Wojna w Ukrainie


Krytycy Izraela


Walka z malarią


Przedwyborcza kampania


Nowy ateizm


Rzeczywiste łamanie


Jest lepiej


Aburd


Rasy - konstrukt


Zielone energie


Zmiana klimatu


Pogrzebać złudzenia Oslo


Kilka poważnych...


Przeciwko autentyczności


Nowy ateizm


Lomborg


„Choroba” przywrócona przez Putina


„Przebudzeni”


Pod sztandarem


Wielki przekret


Łamanie praw człowieka


Jason Hill


Dlaczego BIden


Korzenie kryzysu energetycznego



Obietnica



Pytanie bez odpowiedzi



Bohaterzy chińskiego narodu



Naukowcy Unii Europejskiej



Teoria Rasy



Przekupieni



Heretycki impuls



Nie klanial



Cervantes



Wojaki Chrystusa


Listy z naszego sadu
Redaktor naczelny:   Hili
Webmaster:   Andrzej Koraszewski
Współpracownicy:   Jacek, , Małgorzata, Andrzej, Henryk