Prawda

Środa, 1 maja 2024 - 10:26

« Poprzedni Następny »


“Czarne tygrysy” w małym indyjskim rezerwacie sugerują losowy dryf genetyczny


Jerry A. Coyne 2021-10-26


Dwiema największymi siłami, które zmieniają częstotliwość wariantów genów w populacji, są dobór naturalny i dryf genetyczny. Dobór naturalny jest szeroko znany, ale ludzie, którzy nie zajmują się zawodowo ewolucją, nie doceniają dryfu genetycznego. Jest to po prostu zmiana częstotliwości wariantów genów spowodowana wyłącznie przez przypadek: losowe sortowanie i występowanie wariantów z pokolenia na pokolenie nie z powodu jakiejś wewnętrznej korzyści lub negatywnego wpływu danych genów na reprodukcję.

Ucząc studentów o dryfie genetycznym często robi się ćwiczenia polegające na tworzeniu populacji przez wybieranie kolorowych kulek z woreczka. Jeśli w woreczku jest dziesięć kulek, pięć czerwonych i pięć niebieskich (reprezentujące populację z równą częstotliwością dwóch wariantów genu), i wybierają pięć, by były genami następnego pokolenia (wielkość populacji musi być skończona), to mogą wziąć trzy czerwone i dwie niebieskie kulki. Następnie tworzymy nowy woreczek z nowymi częstotliwościami populacji – 6 czerwonych kulek i 4 niebieskie. Częstotliwość czerwonego wariantu podniosła się z  50% do 60%. Powtórz to wiele razy, a zobaczysz, że częstotliwość kulek zmienia każde pokolenie wyłącznie z powodu przypadku. Po wystarczająco długim czasie wszystkie kulki będą tego samego koloru i wtedy dalsza zmiana nie jest już możliwa (to nazywa się „fiksacją”). Tak więc widzimy zachodzenie zmiany częstotliwości występowania genu (co większość z nas definiuje jako ewolucję), ale nie było to wynikiem doboru naturalnego, nie było świadomego wybierania kulek jednego koloru. Często dawałem moim studentom przykłady zmiany częstotliwości genu w jednej populacji i mówiłem: “co zrobilibyście, by ustalić, czy jest tak z powodu doboru naturalnego?” (Odpowiedź: załóż replikujące się populacje. Dobór zawsze napędza ten sam wariant do wysokiej częstotliwości, podczas gdy przy dryfie widzimy rozmaite i odwrotne zmiany w replikujących się populacjach.)


Im mniejsza populacja, tym większe szanse, że zajdzie zmiana w proporcji genów (tj. tym silniejszy “dryf genetyczny”). Faktycznie, jeśli populacja jest wystarczająco mała, dryf genetyczny może przezwyciężyć dobór naturalny, podnosząc warianty, które zmniejszają reprodukcję. Kiedy widzisz małą populację z wysoką częstotliwością dziwnych lub wręcz szkodliwych  wariantów, możesz zacząć podejrzewać działanie dryfu. Chów wsobny można uważać za rodzaj dryfu genetycznego w małej populacji i dlatego widzimy wysoką częstotliwość chorób genetycznych w małych populacjach ludzi (tutaj jest kilka przykładów u Amiszów).


Artykuł z najnowszego numeru “Proceedings of the National Academy of Sciences” pokazuje prawdopodobny przypadek dryfu genetycznego, który powoduje większe i ciemniejsze prążki u tygrysów w Indiach. Można przeczytać go przez kliknięcie na link pod zrzutem z ekranu poniżej lub w pdf tutaj.


Jest także komentarz PNAS o tym artykule, jeśli chcesz skrót. Kliknij na link pod zrzutem z ekranu poniżej lub weź pdf tutaj.


Indie są domem dla dwóch trzecich tygrysów na świecie i naturalne populacje są często podzielone z powodu zniszczenia habitatu i mogą być także bardzo małe z powodu intensywnych polowań w przeszłości. Badanie indyjskich tygrysów w rezerwatach przyrody i zoo pokazało, że jeden teren, Rezerwat Tygrysów Similipal w Odisha, ma wysoki odsetek tygrysów z ciemnymi prążkami, nazywanych „czarnymi tygrysami”. Nie jest to tym samym, co melanizm, jaki widzimy u lampartów i jaguarów – oba nazywane „czarnymi panterami, choć są to różne gatunki. Poniżej jest czarny tygrys (po prawej) w porównaniu do „normalnego” tygrysa.



Poniżej jest mapa, która pokazuje, jak autorzy badali tygrysy. Kółka są naturalnymi populacjami, a kwadraty to zoo lub zamknięte rezerwaty. Wielkość kół i kwadratów reprezentuje wielkość próby tygrysów. Dodałem strzałkę, która pokazuje Rezerwat Tygrysów Similipal.


Czarne tygrysy znajdują się tylko w Similipal lub w małych rezerwatach i zoo. Diagramy kołowe pokazują częstotliwość osobników, które mają zero (żółte), jeden (pomarańczowe) lub dwie kopie zmutowanego genu, który powoduje niezwykły wzór (czarny kolor). Diagram poniżej pokazuje, że czarne tygrysy “m/m” w stanie dzikim znajdują się tylko w Similipal, ale są także w dwóch zoo, gdzie prawdopodobnie zostały wybrane do hodowli, ponieważ są niezwykłe. Ponadto stwierdzono, że wszystkie czarne tygrysy w zoo miały co najmniej jednego przodka z Similipal.


Z jakiegoś powodu ta mała, dzika populacja ma wysoką częstotliwość czarnego wariantu (allelu). (Jest co najmniej 12 dorosłych tygrysów w Simlipal, a nie może ich być dużo więcej, bo strażnicy leśni potrafią je identyfikować.)


(From paper): Fig. 2. Distribution of the genotyped individuals. A total of 428 individuals were genotyped at the Taqpep c.1360C > T mutation site. Wild tigers are shown with a circular marker, and captive tigers (NKB, AAC, and Mysore Zoo) are shown with a square marker. The size of the square/circle indicates the number of individuals genotyped from a given area. In addition to the 399 Bengal tigers shown on the map, we genotyped 12 Amur, 12 Malayan, and five Sumatran tigers from Armstrong et al. (40) These are not shown on the map to allow the figure to focus on sampling within India. The fraction of the three genotypes in samples from the three populations in which pseudomelanistic tigers are present is shown with the pie chart. Similipal is the only population of wild tigers to have pseudomelanistic tigers, and the other two populations are of captive tigers. All wild tigers were homozygous for the wild-type allele at Taqpep c.1360C > T site except for Similipal individuals.
(From paper): Fig. 2. Distribution of the genotyped individuals. A total of 428 individuals were genotyped at the Taqpep c.1360C > T mutation site. Wild tigers are shown with a circular marker, and captive tigers (NKB, AAC, and Mysore Zoo) are shown with a square marker. The size of the square/circle indicates the number of individuals genotyped from a given area. In addition to the 399 Bengal tigers shown on the map, we genotyped 12 Amur, 12 Malayan, and five Sumatran tigers from Armstrong et al. (40) These are not shown on the map to allow the figure to focus on sampling within India. The fraction of the three genotypes in samples from the three populations in which pseudomelanistic tigers are present is shown with the pie chart. Similipal is the only population of wild tigers to have pseudomelanistic tigers, and the other two populations are of captive tigers. All wild tigers were homozygous for the wild-type allele at Taqpep c.1360C > T site except for Similipal individuals.

Badaczom łatwo było zdobyć próbki DNA tygrysów, które są w niewoli, ale zdobycie DNA dzikich tygrysów jest trudne. Tropili tygrysy i zbierali ich odchody, ślinę z zabitej zwierzyny lub pozostawioną sierść tygrysów. Sekwencjonowanie może pokazać natychmiast, czy masz DNA tygrysa, czy czegoś innego. Nie całkiem wiem, jak udało im się rozróżniać ślady lub zwierzynę indywidualnych tygrysów, ale różnice DNA z różnych próbek informują, z iloma tygrysami ma się do czynienia. 

Jeśli rzeczywiście tylko jeden gen powoduje czerń prążków, to zachowuje się jak gen recesywny; to jest, tygrys musi mieć dwie kopie zmutowanego genu, żeby być czarnym tygrysem. Bez żadnej kopi lub z jedną kopią w parze z “normalnym” allelem, wygląda jak normalny tygrys. Tutaj jest genealogia z zapisów hodowlanych tygrysów w niewoli. Kolor pomarańczowy reprezentuje normalnie ubarwionego tygrysa, a czarny reprezentuje „czarne tygrysy”. Kółka reprezentują samice, a kwadraty samców.

Widać, że dwa pomarańczowe tygrysy mogą dać czarnego; w tych wypadkach każdy z pomarańczowych rodziców ma jedną kopię recesywnego, “czarnego” allelu; są “heterozygotami”.  To jeszcze nie jest absolutnie pewien dowód na pojedynczy gen recesywny; wzmocniłoby argument, gdyby skojarzyć dwa czarne tygrysy i całe ich potomstwo byłoby czarne, bo to przewiduje się przy recesywnym genie.


From paper: (From paper): (B) The pedigree of the captive tigers sampled for this study. The individual labels shown in red are for the tigers whose genome was sequenced for this study (NKB17 is not shown in the pedigree). The genotype values are indicated for the individuals sampled and successfully genotyped at the mutation site (+/+ for wild-type homozygote, +/m for heterozygote, m/m for mutant homozygote, and x/x for missing genotype). Squares represent males, and circles represent females. Pseudomelanistic phenotype is represented in solid black shapes. The dashed line shows the presence of the same individual at two spots in the pedigree.
From paper: (From paper): (B) The pedigree of the captive tigers sampled for this study. The individual labels shown in red are for the tigers whose genome was sequenced for this study (NKB17 is not shown in the pedigree). The genotype values are indicated for the individuals sampled and successfully genotyped at the mutation site (+/+ for wild-type homozygote, +/m for heterozygote, m/m for mutant homozygote, and x/x for missing genotype). Squares represent males, and circles represent females. Pseudomelanistic phenotype is represented in solid black shapes. The dashed line shows the presence of the same individual at two spots in the pedigree.

Skąd jednak wiemy, że czarny wzór jest powodowany przez pojedynczy gen? Autorzy zsekwencjonowali cały genom i znaleźli jeden gen, którego warianty całkowicie zgadzały się z kolorem: jeśli osobnik miał dwie zmutowane kopie, których sekwencja DNA eliminuje tworzenie się białka kodowanego przez ten gen, był czarny. Jeśli jednak miał tylko jedną kopię, był normalnie ubarwiony. Ten gen o nazwie Taqpep jest wskazywany jako odpowiedzialny za ciemne odmiany u innych kotów (patrz poniżej). Pełna nazwa brzmi: “transbłonowa aminopeptydaza Q”, a zmutowana postać, która w ogóle nie działa, nazywa się Taqpep pH454Y. Nie jesteśmy pewni, jak działa “normalny” gen w tworzeniu wzorów: enzym bierze udział w rozkładaniu innych białek, a także pomaga przy tworzeniu łożyska u ludzi! 


Wiemy natomiast, że inne zmutowane kotowate z ciemniejszymi i szerszymi prążkami także mają mutację genu Taqpep. Poniżej jest ilustracja z artykułu pokazująca homozygotyczne mutacje tego genu u tygrysa, domowego kota i geparda. U gepardów daje ciemne plamy zamiast cętek (patrz poniżej). Każda z tych trzech mutacji Taqpep jest inna, więc mamy tutaj przykład “konwergentnej ewolucji”, różne gatunki dotarły do podobnego wyglądu przez niezależne mutacje. Te mutacje musiały zdarzyć się po oddzieleniu się tych trzech kotów od wspólnego przodka, który dla wszystkich trzech żył 11,5 miliona lat temu, a dla domowego kota i geparda 8,8 milionów lat temu.


(From paper): Fig. 1. Convergent evolution of broadened stripes/spots in cat species. The phenotype has arisen independently in the domestic cat (Felis catus), cheetah (Acinonyx jubatus), and tiger (Panthera tigris). (A) The phylogeny on the left depicts the relationships among the three species; numbers above branches indicate the divergence times (in million years ago) among their respective lineages; a timescale is shown at the bottom (tree and node dates are from ref. 17). In each of these species, the phenotype is caused by unique mutations in the Taqpep gene, whose positions in the encoded protein are indicated below the respective branch. Coat pattern images are modified from the photos provided in the original articles: ref. 10 for domestic cat and cheetah; ref. 8 for tiger. (B) Schematic of the Taqpep protein indicating the positions of the five pattern-altering mutations shown in A (color coded per species).
(From paper): Fig. 1. Convergent evolution of broadened stripes/spots in cat species. The phenotype has arisen independently in the domestic cat (Felis catus), cheetah (Acinonyx jubatus), and tiger (Panthera tigris). (A) The phylogeny on the left depicts the relationships among the three species; numbers above branches indicate the divergence times (in million years ago) among their respective lineages; a timescale is shown at the bottom (tree and node dates are from ref. 17). In each of these species, the phenotype is caused by unique mutations in the Taqpep gene, whose positions in the encoded protein are indicated below the respective branch. Coat pattern images are modified from the photos provided in the original articles: ref. 10 for domestic cat and cheetah; ref. 8 for tiger. (B) Schematic of the Taqpep protein indicating the positions of the five pattern-altering mutations shown in A (color coded per species).

Poniżej “królewski” gepard (po prawej) obok normalnego geparda:



Skąd wzięły się czarne tygrysy w Similipal? Biorąc pod uwagę, że ten gen jest rzadki poza zoo i że populacja w Similipal jest mała, prawdopodobnym wyjaśnieniem jest dryf genetyczny. Mutacja mogła być “neutralna” tj., mogła nie dawać ani korzyści, ani nie być szkodliwa z punktu widzenia reprodukcji w porównaniu do „normalnych tygrysów”, a nawet mogła być w niewielkim stopniu szkodliwa. Gdyby ciemna postać była selekcyjnie korzystna, widzielibyśmy w Indiach wiele takich populacji, bo zmutowany gen stawałby się częstszy. (Dalsza analiza genomu nie pokazuje oznak, że gen zwiększył częstotliwość z powodu doboru naturalnego, ale nie można tego powiedzieć z całkowitą pewnością.)  


Autorzy wykonali symulację z założeniem, że populacja z Similipal została izolowana od innych populacji 10-50 tygrysich populacji temu i doszli do wniosku, że populację prawdopodobnie założyło parę tygrysów: dwa lub trzy. W Similipal frekwencja “ciemnej” postaci genu wynosi około 58%, podczas gdy jasna postać genu wynosi około 42%. Gdyby krzyżowania były losowe, oczekiwalibyśmy (0.58)² ciemnych tygrysów lub około 34% wszystkich tygrysów. Jak widać na diagramie kołowym dla Similipal powyżej, jest to dość bliskie faktycznemu rozkładowi.   


To zatem byłby dobry przykład podczas nauczania o dryfie genetycznym. Trudno jest dobrze o tym nauczać, ponieważ wymaga to matematyki, czego studenci nie lubią. Ucząc zawsze potrzeba przykładów i możemy zademonstrować dryf w laboratorium używając woreczków z kulkami albo symulacji komputerowej. Lepiej jest jednak mieć przykłady z przyrody i tego przykładu użyłbym, ponieważ spełnia warunki dryfu i nie widać doboru faworyzującego czarny gen, a wiadomo, że populacja jest mała i izolowana.

______________

Sagar, V. Christopher B. Kaelin, Meghana Natesh, P. Anuradha Reddy, Rajesh K. Mohapatra, Himanshu Chhattani, Prachi Thatte, Srinivas Vaidyanathan, Suvankar Biswas, Supriya Bhatt, Shashi Paul, Yadavendradev V. Jhala, Mayank, M. Verma Bivash Pandav, Samrat Mondol, Gregory S. Barsh, Debabrata Swain, and Uma Ramakrishnan. 2021. High frequency of an otherwise rare phenotype in a small and isolated tiger population Proceedings of the National Academy of Sciences 118 (39): e2025273118; DOI: 10.1073/pnas.2025273118

 

”Black tigers” in a small Indian reserve suggest random genetic drift

Why Evolution Is True, 17 października 2021

Tłumaczenie: Małgorzata Koraszewska  



Jerry A. Coyne

Emerytowany profesor na wydziale ekologii i ewolucji University of Chicago, jego książka "Why Evolution is True" (Polskie wydanie: "Ewolucja jest faktem", Prószyński i Ska, 2009r.) została przełożona na kilkanaście języków, a przez Richarda Dawkinsa jest oceniana jako najlepsza książka o ewolucji.  Jerry Coyne jest jednym z najlepszych na świecie specjalistów od specjacji, rozdzielania się gatunków. Jest również jednym ze znanych "nowych ateistów" i autorem książki "Faith vs Fakt". Jest wielkim miłośnikiem kotów i osobistym przyjacielem redaktor naczelnej.
 

Skomentuj Tipsa en vn Wydrukuj






Nauka

Znalezionych 1475 artykuły.

Tytuł   Autor   Opublikowany

Akupunktura na pogotowiu też nie działa   Novella   2017-07-04
Alaska — nurniczki i obopólny dobór płciowy   Lyon   2019-08-20
Ale czy mogą cierpieć?   Dawkins   2018-07-07
Ale jak to bezbarwnikowy?   Łopatniuk   2019-06-01
Ale najpierw kawa   Tonhasca Júnior   2024-03-21
Ale tego wija lepiej zostaw w spokoju   Łopatniuk   2018-08-24
Alfred Sturtevant: bohater genetyki   Coyne   2017-02-06
Alternatywna medycyna zabija   Novella   2017-12-26
Americana   Tonhasca Júnior   2023-05-24
Amerykańscy aktywiści na rzecz niedożywienia w Ugandzie   Ongu   2016-03-01
Amfisbeny   Naskręcki   2014-06-16
Amonit (i masa innych stworzeń) znaleziona w birmańskim bursztynie   Coyne   2019-06-21
Anglia pozwala na uprawy poddane edycji genów   Novella   2023-04-03
Animula blandula, blastula vagularzecz o zarodkach wędrujących gdzie nie trzeba   Łopatniuk   2015-12-19
Antynauka czystego jedzenia   Novella   2017-11-08
Antynaukowe przesłanie „Frankensteina” zawsze było głupie   Ridley   2017-06-12
Antyszczepionkowcy - pielęgniarka lub lekarz nie powinni opiekować się dziećmi     2018-09-10
Apoptoza całego ciała   Dennett   2018-11-09
Aquilops, mały dinozaur, który wiele mógł   Farke   2015-01-15
Architektura żywych budowli   Yong   2014-06-20
Argument neuroróżnorodności na rzecz wolności słowa   Miller   2017-08-08
Artykuł w “Nature” sugeruje, że ludzie żyli w Ameryce Północnej 130 tysięcy lat temu   Mayer   2017-04-29
Artykuł w naukowym piśmie ”Nature” dyskredytuje naukę i „scjentyzm”, kwestionuje wartości Oświecenia   Coyne   2019-10-22
Artykuł w piśmie „Science”: rozszerzyć DEI w STEMM   Coyne   2024-04-19
Astrocyty tworzą nowe neurony po udarze   Łopatniuk   2015-03-04
Atak “doktorostwa Wolfson” na rodziców chłopca, który zmarł na koklusz     2018-09-20
Ateista z chwilową luką w pamięci i w szoku niewolnictwa   Dawkins   2018-09-21
Australijskie koty łożyskowe   Mayer   2015-12-17
Badacz: Ludzki zmysł węchu jest lepszy niż wszyscy myślą; może rywalizować z psim!   Coyne   2017-05-27
Badaczka z Leakey Foundation twierdzi, że kości orangutanów mówią nam, że biologiczna płeć jest spektrum, a nie binarna   Coyne   2023-06-30
Badania dowodzą, że fakty nie mają znaczenia: jak propaganda wykorzystuje i normalizuje antysemityzm     2022-08-03
Badania z poślizgiem   Łopatniuk   2016-12-31
Badanie akupunktury jako terapii na dławicę piersiową   Novella   2019-08-23
Badanie niewiernych norników wiąże geny z mózgiem i z zachowaniem   Yong   2015-12-29
Badanie zaszczepionych i nieszczepionych   Novella   2017-05-20
Bajka o kaczkach karolinkach   Coyne   2016-12-16
Bakterie, które zamieniają ameby w farmerów   Yong   2015-09-01
Bakteryjne ogniwa słoneczne   Novella   2017-09-09
Bakłażan Bt – fałszywa narracja przeciwko GMO   Novella   2016-12-05
Bakłażan GMO jest udokumentowaną wygraną ubogich farmerów   Conrow   2021-09-23
Bambusowi matematycy   Zimmer   2015-05-25
Banany edytowane przez CRISPR   Novella   2021-03-02
Barwny erudyta J.B.S. Haldane   Coyne   2020-08-28
BBC szerzy propagandę rolnictwa organicznego, a biedni na świecie cierpią   i Kathleen Hefferon   2023-10-13
BBC znowu błędnie przedstawia ewolucję, opisując nowe odkrycie wczesnych ssaków wyższych   Coyne   2017-11-14
Bekon bez azotynów   Novella   2018-01-25
Bez płuc i dobrze mu z tym   Naskręcki   2016-02-12
Bez serc, bez głowy   Łopatniuk   2016-07-30
Bezwstydne organiczne sianie strachu   Novella   2018-02-12
Bezzbożowa karma dla psa   Novella   2019-08-29
Biały jak śnieg, żółciutki jak kaczuszka   Łopatniuk   2019-09-04
Biodynamiczne rolnictwo i inne nonsensy   Novella   2017-06-28
Biolog ewolucyjny błądzi pisząc o doborze płciowym na łamach “New York Times”   Coyne   2017-05-17
Biologia męskiej agresji i dlaczego nie jest to tylko „socjalizacja”   Coyne   2019-12-24
Biologia rezygnacji z działania: kiedy kontynuować, a kiedy spasować   Coyne   2023-04-26
Biologia rozwoju ujawnia ewolucyjną historię   Novella   2019-10-15
Biomedyczne znaczenie płci (i jej binarnej natury)   Coyne   2022-09-22
Biotechnologia jest pilnie potrzebna w Afryce – dla gospodarki i środowiska   Ridley   2017-12-08
Biotechnologia może usunąć brudne stopy z ulubionego piwa Ugandy   Ongu   2016-06-14
Biotechnologia podnosi plony wysokobiałkowego afrykańskiego pochrzynu   Wetaya   2022-02-04
Bliskie spotkania z baronem MünchausenemPaulina Łopatniuk     2017-07-22
Bodźce do innowacji w końcu pokonają COVID-19   Ridley   2020-06-27
Brazylia liczy na technologię izraelską, by rozwiązać śmierdzący problem   Leichman   2017-05-04
Brian Charlesworth o błędach nowego artykułu rzekomo pokazującego, że fundamentalne założenie ewolucji neodarwinowskiej jest błędne   Coyne   2022-05-16
Brudna pardwa górska   Lyon   2018-12-24
Budzenie zmarłych   Novella   2018-05-21
Bądźcie sceptyczni wobec wideo pokazujących “skutki uboczne” szczepionki   Novella   2021-01-28
Bąkojady czyszczą nosorożce   Coyne   2023-01-18
Błędna historia antykolonializmu   Tupy   2021-04-21
Błędna krytyka genetycznych testów na pochodzenie   Coyne   2023-06-02
Błędne wyobrażenia o ewolucji   Coyne   2023-06-16
Błogosławieni ci, którzy wycofują   Jacoby   2019-10-19
Błysk światła w mroku   Sheagren   2020-06-12
Błąd atrybucji, sofizmat rozszerzenia (atakowanie chochoła) i zasada wielkoduszności   Novella   2018-03-14
Carl Sagan i wolność wątpienia   Jacoby   2022-07-18
Carl Zimmer o gatunkach i ochronie     2024-02-29
Centrala muszek owocowych: Bloomington Drosophila Stock Center   Coyne   2020-12-29
ChatGPT niemal zdaje lekarski egzamin końcowy   Novella   2023-02-21
Chcąc zadowolić antyaborcjonistów administracja Trumpa tnie finansowanie badań medycznych przy użyciu tkanki płodowej   Coyne   2019-06-11
Chemicznie zakamuflowana żaba     2015-12-12
Chiński dinozaur miał skrzydła jak nietoperz i pióra   Yong   2015-05-14
Choroba bananów, GMO i ewolucja produkcji żywności   Ongu   2017-08-19
Choroba zielonych mięśni   Łopatniuk   2019-09-14
Chromosom jak szczotka, czyli co robi Ki-67   Łopatniuk   2016-07-09
Chromosomy Y ludzi, neandertalczyków i denisowian   Novella   2020-10-08
Chwytówka modliszkowata ma chodzącą poczwarkę, która wspina się na drzewa przed przekształceniem   Coyne   2017-12-19
Ciemna materia genetyki psychiatrycznej   Zimmer   2014-01-06
Ciepło zabija. Zimno zabija wielu więcej   Jacoby   2023-01-09
Ciepło, zimno i śmierć w oczach mediów   Lomborg   2017-07-21
Cierpienie i pytanie, czy przestaniemy jeść mięso   Koraszewski   2021-07-14
Ciężarna wężyca przygotowuje się do macierzyństwa   Yong   2014-11-20
Ciąg dalszy sporu o dobór grupowy   Coyne   2015-04-22
Co byłoby, gdyby Wilkins i Franklin umieli ze sobą współpracować?   Cobb   2016-09-03
Co czyni nas ludźmi?   Dawkins   2014-01-07
Co kręci płaskoziemców   Novella   2019-03-02
Co mówi nam ruch płaskiej Ziemi     2018-05-17
Co mamy zrobić z neuroróżnorodnością?   Coyne   2015-07-02
Co nam daje psychologia ewolucyjna?   Flock   2018-11-01
Co nauka może powiedzieć pani Ocasio-Cortez o klimacie   Lomborg   2019-02-15
Co robi mózg, kiedy widzisz nie to, co chcesz?   Koraszewski   2017-01-03

« Poprzednia strona  Następna strona »
Polecane
artykuły

Lekarze bez Granic


Wojna w Ukrainie


Krytycy Izraela


Walka z malarią


Przedwyborcza kampania


Nowy ateizm


Rzeczywiste łamanie


Jest lepiej


Aburd


Rasy - konstrukt


Zielone energie


Zmiana klimatu


Pogrzebać złudzenia Oslo


Kilka poważnych...


Przeciwko autentyczności


Nowy ateizm


Lomborg


„Choroba” przywrócona przez Putina


„Przebudzeni”


Pod sztandarem


Wielki przekret


Łamanie praw człowieka


Jason Hill


Dlaczego BIden


Korzenie kryzysu energetycznego



Obietnica



Pytanie bez odpowiedzi



Bohaterzy chińskiego narodu



Naukowcy Unii Europejskiej



Teoria Rasy



Przekupieni



Heretycki impuls



Nie klanial



Cervantes



Wojaki Chrystusa


Listy z naszego sadu
Redaktor naczelny:   Hili
Webmaster:   Andrzej Koraszewski
Współpracownicy:   Jacek, , Małgorzata, Andrzej, Henryk