Prawda

Czwartek, 18 kwietnia 2024 - 12:54

« Poprzedni Następny »


“Czarne tygrysy” w małym indyjskim rezerwacie sugerują losowy dryf genetyczny


Jerry A. Coyne 2021-10-26


Dwiema największymi siłami, które zmieniają częstotliwość wariantów genów w populacji, są dobór naturalny i dryf genetyczny. Dobór naturalny jest szeroko znany, ale ludzie, którzy nie zajmują się zawodowo ewolucją, nie doceniają dryfu genetycznego. Jest to po prostu zmiana częstotliwości wariantów genów spowodowana wyłącznie przez przypadek: losowe sortowanie i występowanie wariantów z pokolenia na pokolenie nie z powodu jakiejś wewnętrznej korzyści lub negatywnego wpływu danych genów na reprodukcję.

Ucząc studentów o dryfie genetycznym często robi się ćwiczenia polegające na tworzeniu populacji przez wybieranie kolorowych kulek z woreczka. Jeśli w woreczku jest dziesięć kulek, pięć czerwonych i pięć niebieskich (reprezentujące populację z równą częstotliwością dwóch wariantów genu), i wybierają pięć, by były genami następnego pokolenia (wielkość populacji musi być skończona), to mogą wziąć trzy czerwone i dwie niebieskie kulki. Następnie tworzymy nowy woreczek z nowymi częstotliwościami populacji – 6 czerwonych kulek i 4 niebieskie. Częstotliwość czerwonego wariantu podniosła się z  50% do 60%. Powtórz to wiele razy, a zobaczysz, że częstotliwość kulek zmienia każde pokolenie wyłącznie z powodu przypadku. Po wystarczająco długim czasie wszystkie kulki będą tego samego koloru i wtedy dalsza zmiana nie jest już możliwa (to nazywa się „fiksacją”). Tak więc widzimy zachodzenie zmiany częstotliwości występowania genu (co większość z nas definiuje jako ewolucję), ale nie było to wynikiem doboru naturalnego, nie było świadomego wybierania kulek jednego koloru. Często dawałem moim studentom przykłady zmiany częstotliwości genu w jednej populacji i mówiłem: “co zrobilibyście, by ustalić, czy jest tak z powodu doboru naturalnego?” (Odpowiedź: załóż replikujące się populacje. Dobór zawsze napędza ten sam wariant do wysokiej częstotliwości, podczas gdy przy dryfie widzimy rozmaite i odwrotne zmiany w replikujących się populacjach.)


Im mniejsza populacja, tym większe szanse, że zajdzie zmiana w proporcji genów (tj. tym silniejszy “dryf genetyczny”). Faktycznie, jeśli populacja jest wystarczająco mała, dryf genetyczny może przezwyciężyć dobór naturalny, podnosząc warianty, które zmniejszają reprodukcję. Kiedy widzisz małą populację z wysoką częstotliwością dziwnych lub wręcz szkodliwych  wariantów, możesz zacząć podejrzewać działanie dryfu. Chów wsobny można uważać za rodzaj dryfu genetycznego w małej populacji i dlatego widzimy wysoką częstotliwość chorób genetycznych w małych populacjach ludzi (tutaj jest kilka przykładów u Amiszów).


Artykuł z najnowszego numeru “Proceedings of the National Academy of Sciences” pokazuje prawdopodobny przypadek dryfu genetycznego, który powoduje większe i ciemniejsze prążki u tygrysów w Indiach. Można przeczytać go przez kliknięcie na link pod zrzutem z ekranu poniżej lub w pdf tutaj.


Jest także komentarz PNAS o tym artykule, jeśli chcesz skrót. Kliknij na link pod zrzutem z ekranu poniżej lub weź pdf tutaj.


Indie są domem dla dwóch trzecich tygrysów na świecie i naturalne populacje są często podzielone z powodu zniszczenia habitatu i mogą być także bardzo małe z powodu intensywnych polowań w przeszłości. Badanie indyjskich tygrysów w rezerwatach przyrody i zoo pokazało, że jeden teren, Rezerwat Tygrysów Similipal w Odisha, ma wysoki odsetek tygrysów z ciemnymi prążkami, nazywanych „czarnymi tygrysami”. Nie jest to tym samym, co melanizm, jaki widzimy u lampartów i jaguarów – oba nazywane „czarnymi panterami, choć są to różne gatunki. Poniżej jest czarny tygrys (po prawej) w porównaniu do „normalnego” tygrysa.



Poniżej jest mapa, która pokazuje, jak autorzy badali tygrysy. Kółka są naturalnymi populacjami, a kwadraty to zoo lub zamknięte rezerwaty. Wielkość kół i kwadratów reprezentuje wielkość próby tygrysów. Dodałem strzałkę, która pokazuje Rezerwat Tygrysów Similipal.


Czarne tygrysy znajdują się tylko w Similipal lub w małych rezerwatach i zoo. Diagramy kołowe pokazują częstotliwość osobników, które mają zero (żółte), jeden (pomarańczowe) lub dwie kopie zmutowanego genu, który powoduje niezwykły wzór (czarny kolor). Diagram poniżej pokazuje, że czarne tygrysy “m/m” w stanie dzikim znajdują się tylko w Similipal, ale są także w dwóch zoo, gdzie prawdopodobnie zostały wybrane do hodowli, ponieważ są niezwykłe. Ponadto stwierdzono, że wszystkie czarne tygrysy w zoo miały co najmniej jednego przodka z Similipal.


Z jakiegoś powodu ta mała, dzika populacja ma wysoką częstotliwość czarnego wariantu (allelu). (Jest co najmniej 12 dorosłych tygrysów w Simlipal, a nie może ich być dużo więcej, bo strażnicy leśni potrafią je identyfikować.)


(From paper): Fig. 2. Distribution of the genotyped individuals. A total of 428 individuals were genotyped at the Taqpep c.1360C > T mutation site. Wild tigers are shown with a circular marker, and captive tigers (NKB, AAC, and Mysore Zoo) are shown with a square marker. The size of the square/circle indicates the number of individuals genotyped from a given area. In addition to the 399 Bengal tigers shown on the map, we genotyped 12 Amur, 12 Malayan, and five Sumatran tigers from Armstrong et al. (40) These are not shown on the map to allow the figure to focus on sampling within India. The fraction of the three genotypes in samples from the three populations in which pseudomelanistic tigers are present is shown with the pie chart. Similipal is the only population of wild tigers to have pseudomelanistic tigers, and the other two populations are of captive tigers. All wild tigers were homozygous for the wild-type allele at Taqpep c.1360C > T site except for Similipal individuals.
(From paper): Fig. 2. Distribution of the genotyped individuals. A total of 428 individuals were genotyped at the Taqpep c.1360C > T mutation site. Wild tigers are shown with a circular marker, and captive tigers (NKB, AAC, and Mysore Zoo) are shown with a square marker. The size of the square/circle indicates the number of individuals genotyped from a given area. In addition to the 399 Bengal tigers shown on the map, we genotyped 12 Amur, 12 Malayan, and five Sumatran tigers from Armstrong et al. (40) These are not shown on the map to allow the figure to focus on sampling within India. The fraction of the three genotypes in samples from the three populations in which pseudomelanistic tigers are present is shown with the pie chart. Similipal is the only population of wild tigers to have pseudomelanistic tigers, and the other two populations are of captive tigers. All wild tigers were homozygous for the wild-type allele at Taqpep c.1360C > T site except for Similipal individuals.

Badaczom łatwo było zdobyć próbki DNA tygrysów, które są w niewoli, ale zdobycie DNA dzikich tygrysów jest trudne. Tropili tygrysy i zbierali ich odchody, ślinę z zabitej zwierzyny lub pozostawioną sierść tygrysów. Sekwencjonowanie może pokazać natychmiast, czy masz DNA tygrysa, czy czegoś innego. Nie całkiem wiem, jak udało im się rozróżniać ślady lub zwierzynę indywidualnych tygrysów, ale różnice DNA z różnych próbek informują, z iloma tygrysami ma się do czynienia. 

Jeśli rzeczywiście tylko jeden gen powoduje czerń prążków, to zachowuje się jak gen recesywny; to jest, tygrys musi mieć dwie kopie zmutowanego genu, żeby być czarnym tygrysem. Bez żadnej kopi lub z jedną kopią w parze z “normalnym” allelem, wygląda jak normalny tygrys. Tutaj jest genealogia z zapisów hodowlanych tygrysów w niewoli. Kolor pomarańczowy reprezentuje normalnie ubarwionego tygrysa, a czarny reprezentuje „czarne tygrysy”. Kółka reprezentują samice, a kwadraty samców.

Widać, że dwa pomarańczowe tygrysy mogą dać czarnego; w tych wypadkach każdy z pomarańczowych rodziców ma jedną kopię recesywnego, “czarnego” allelu; są “heterozygotami”.  To jeszcze nie jest absolutnie pewien dowód na pojedynczy gen recesywny; wzmocniłoby argument, gdyby skojarzyć dwa czarne tygrysy i całe ich potomstwo byłoby czarne, bo to przewiduje się przy recesywnym genie.


From paper: (From paper): (B) The pedigree of the captive tigers sampled for this study. The individual labels shown in red are for the tigers whose genome was sequenced for this study (NKB17 is not shown in the pedigree). The genotype values are indicated for the individuals sampled and successfully genotyped at the mutation site (+/+ for wild-type homozygote, +/m for heterozygote, m/m for mutant homozygote, and x/x for missing genotype). Squares represent males, and circles represent females. Pseudomelanistic phenotype is represented in solid black shapes. The dashed line shows the presence of the same individual at two spots in the pedigree.
From paper: (From paper): (B) The pedigree of the captive tigers sampled for this study. The individual labels shown in red are for the tigers whose genome was sequenced for this study (NKB17 is not shown in the pedigree). The genotype values are indicated for the individuals sampled and successfully genotyped at the mutation site (+/+ for wild-type homozygote, +/m for heterozygote, m/m for mutant homozygote, and x/x for missing genotype). Squares represent males, and circles represent females. Pseudomelanistic phenotype is represented in solid black shapes. The dashed line shows the presence of the same individual at two spots in the pedigree.

Skąd jednak wiemy, że czarny wzór jest powodowany przez pojedynczy gen? Autorzy zsekwencjonowali cały genom i znaleźli jeden gen, którego warianty całkowicie zgadzały się z kolorem: jeśli osobnik miał dwie zmutowane kopie, których sekwencja DNA eliminuje tworzenie się białka kodowanego przez ten gen, był czarny. Jeśli jednak miał tylko jedną kopię, był normalnie ubarwiony. Ten gen o nazwie Taqpep jest wskazywany jako odpowiedzialny za ciemne odmiany u innych kotów (patrz poniżej). Pełna nazwa brzmi: “transbłonowa aminopeptydaza Q”, a zmutowana postać, która w ogóle nie działa, nazywa się Taqpep pH454Y. Nie jesteśmy pewni, jak działa “normalny” gen w tworzeniu wzorów: enzym bierze udział w rozkładaniu innych białek, a także pomaga przy tworzeniu łożyska u ludzi! 


Wiemy natomiast, że inne zmutowane kotowate z ciemniejszymi i szerszymi prążkami także mają mutację genu Taqpep. Poniżej jest ilustracja z artykułu pokazująca homozygotyczne mutacje tego genu u tygrysa, domowego kota i geparda. U gepardów daje ciemne plamy zamiast cętek (patrz poniżej). Każda z tych trzech mutacji Taqpep jest inna, więc mamy tutaj przykład “konwergentnej ewolucji”, różne gatunki dotarły do podobnego wyglądu przez niezależne mutacje. Te mutacje musiały zdarzyć się po oddzieleniu się tych trzech kotów od wspólnego przodka, który dla wszystkich trzech żył 11,5 miliona lat temu, a dla domowego kota i geparda 8,8 milionów lat temu.


(From paper): Fig. 1. Convergent evolution of broadened stripes/spots in cat species. The phenotype has arisen independently in the domestic cat (Felis catus), cheetah (Acinonyx jubatus), and tiger (Panthera tigris). (A) The phylogeny on the left depicts the relationships among the three species; numbers above branches indicate the divergence times (in million years ago) among their respective lineages; a timescale is shown at the bottom (tree and node dates are from ref. 17). In each of these species, the phenotype is caused by unique mutations in the Taqpep gene, whose positions in the encoded protein are indicated below the respective branch. Coat pattern images are modified from the photos provided in the original articles: ref. 10 for domestic cat and cheetah; ref. 8 for tiger. (B) Schematic of the Taqpep protein indicating the positions of the five pattern-altering mutations shown in A (color coded per species).
(From paper): Fig. 1. Convergent evolution of broadened stripes/spots in cat species. The phenotype has arisen independently in the domestic cat (Felis catus), cheetah (Acinonyx jubatus), and tiger (Panthera tigris). (A) The phylogeny on the left depicts the relationships among the three species; numbers above branches indicate the divergence times (in million years ago) among their respective lineages; a timescale is shown at the bottom (tree and node dates are from ref. 17). In each of these species, the phenotype is caused by unique mutations in the Taqpep gene, whose positions in the encoded protein are indicated below the respective branch. Coat pattern images are modified from the photos provided in the original articles: ref. 10 for domestic cat and cheetah; ref. 8 for tiger. (B) Schematic of the Taqpep protein indicating the positions of the five pattern-altering mutations shown in A (color coded per species).

Poniżej “królewski” gepard (po prawej) obok normalnego geparda:



Skąd wzięły się czarne tygrysy w Similipal? Biorąc pod uwagę, że ten gen jest rzadki poza zoo i że populacja w Similipal jest mała, prawdopodobnym wyjaśnieniem jest dryf genetyczny. Mutacja mogła być “neutralna” tj., mogła nie dawać ani korzyści, ani nie być szkodliwa z punktu widzenia reprodukcji w porównaniu do „normalnych tygrysów”, a nawet mogła być w niewielkim stopniu szkodliwa. Gdyby ciemna postać była selekcyjnie korzystna, widzielibyśmy w Indiach wiele takich populacji, bo zmutowany gen stawałby się częstszy. (Dalsza analiza genomu nie pokazuje oznak, że gen zwiększył częstotliwość z powodu doboru naturalnego, ale nie można tego powiedzieć z całkowitą pewnością.)  


Autorzy wykonali symulację z założeniem, że populacja z Similipal została izolowana od innych populacji 10-50 tygrysich populacji temu i doszli do wniosku, że populację prawdopodobnie założyło parę tygrysów: dwa lub trzy. W Similipal frekwencja “ciemnej” postaci genu wynosi około 58%, podczas gdy jasna postać genu wynosi około 42%. Gdyby krzyżowania były losowe, oczekiwalibyśmy (0.58)² ciemnych tygrysów lub około 34% wszystkich tygrysów. Jak widać na diagramie kołowym dla Similipal powyżej, jest to dość bliskie faktycznemu rozkładowi.   


To zatem byłby dobry przykład podczas nauczania o dryfie genetycznym. Trudno jest dobrze o tym nauczać, ponieważ wymaga to matematyki, czego studenci nie lubią. Ucząc zawsze potrzeba przykładów i możemy zademonstrować dryf w laboratorium używając woreczków z kulkami albo symulacji komputerowej. Lepiej jest jednak mieć przykłady z przyrody i tego przykładu użyłbym, ponieważ spełnia warunki dryfu i nie widać doboru faworyzującego czarny gen, a wiadomo, że populacja jest mała i izolowana.

______________

Sagar, V. Christopher B. Kaelin, Meghana Natesh, P. Anuradha Reddy, Rajesh K. Mohapatra, Himanshu Chhattani, Prachi Thatte, Srinivas Vaidyanathan, Suvankar Biswas, Supriya Bhatt, Shashi Paul, Yadavendradev V. Jhala, Mayank, M. Verma Bivash Pandav, Samrat Mondol, Gregory S. Barsh, Debabrata Swain, and Uma Ramakrishnan. 2021. High frequency of an otherwise rare phenotype in a small and isolated tiger population Proceedings of the National Academy of Sciences 118 (39): e2025273118; DOI: 10.1073/pnas.2025273118

 

”Black tigers” in a small Indian reserve suggest random genetic drift

Why Evolution Is True, 17 października 2021

Tłumaczenie: Małgorzata Koraszewska  



Jerry A. Coyne

Emerytowany profesor na wydziale ekologii i ewolucji University of Chicago, jego książka "Why Evolution is True" (Polskie wydanie: "Ewolucja jest faktem", Prószyński i Ska, 2009r.) została przełożona na kilkanaście języków, a przez Richarda Dawkinsa jest oceniana jako najlepsza książka o ewolucji.  Jerry Coyne jest jednym z najlepszych na świecie specjalistów od specjacji, rozdzielania się gatunków. Jest również jednym ze znanych "nowych ateistów" i autorem książki "Faith vs Fakt". Jest wielkim miłośnikiem kotów i osobistym przyjacielem redaktor naczelnej.
 

Skomentuj Tipsa en vn Wydrukuj






Nauka

Znalezionych 1473 artykuły.

Tytuł   Autor   Opublikowany

„Grubogłowi przedsiębiorcy pogrzebowi w noc żywych trupów”   Júnior   2022-05-31
„Gryzoń skunksowy”, który żuje trujące rośliny i wypluwa truciznę na swoje futro   Coyne   2020-12-02
„Kryzys klimatyczny” to mistyfikacja   Williams   2023-09-25
„Najbardziej znany zabójca ludzi”: jakie są prawdziwe początki XIV-wiecznej Czarnej Śmierci?   Lewis   2023-09-15
„New Yorker” pisze o hoacynie, sugeruje, że koncepcja Darwina drzew ewolucyjnych może być urojeniem   Coyne   2022-07-25
„San Francisco Chronicle” bardzo myli się w sprawie biologicznej płci   Coyne   2023-06-09
„Zapylisz mnie!”: nachalni bohaterowie świata roślin   Júnior   2022-06-11
“Czarne tygrysy” w małym indyjskim rezerwacie sugerują losowy dryf genetyczny   Coyne   2021-10-26
“Daily Beast” wypacza epigenetykę oszukańczymi twierdzeniami, że dzieci mogą “odziedziczyć wspomnienia Holocaustu”   Coyne   2017-10-05
“Konwergentna” ewolucja mrówek grzybiarek Starego i Nowego świata   Coyne   2023-03-23
“Odwrócenie specjacji” (fuzja gatunków) u kruków   Coyne   2018-03-16
“Partenogenetyczny” rak rozmnaża się bez seksu: czy to jest nowy gatunek?   Coyne   2018-02-17
“Rogi” trylobitów mogły być używane jako broń w walkach między samcami   Coyne   2023-02-15
“Scientific American” poświęca się polityce, a nie nauce; odmawia publikowania krytycznych analiz swoich fałszywych lub wprowadzających w błąd twierdzeń   Coyne   2022-09-01
“Współczesny” Homo sapiens mógł być w Eurazji aż 210 tysięcy lat temu   Coyne   2019-07-17
‘Raniąca’ idea merytorycznych podstaw nauki    i Jerry Coyne   2023-05-29
 Syntetyczna biologia oferuje obietnicę rozwiązania globalnego problemu z plastikiem   Agaba   2021-12-13
10 twierdzeń działaczy walczących w Afryce z GMO o tym, dlaczego postępy w biotechnologii upraw powinny zostać odrzucone – i dlaczego są one błędne   Maina   2022-11-17
100 milionów lat ozdabiania się śmieciami   Yong   2016-07-05
12 podstawowych punktów biologii ewolucyjnej   Cobb   2016-03-02
Pseudonauka Masaru Emoto   Novella   2017-12-18
Czy „toksyczna kobiecość” jest główną przyczyną bojów o społeczną sprawiedliwość?   Coyne   2021-02-08
Paradoksalne cechy genetyki inteligencji   Ridley   2013-12-18
“New Scientist”: Darwin jednak miał rację    Coyne   2020-10-01
Intelektualna pustka numeru “New Scientist” o ewolucji: 1. Genetyczna plastyczność    Coyne   2020-10-03
Intelektualna pustka numeru “New Scientist” o ewolucji: 2. Rzekome nieistnienie gatunków   Coyne   2020-10-05
Klasyczna historia skorygowana: porosty to grzyby + glony + drożdże (inne grzyby)   Coyne   2016-08-05
Homo floresiensis, hominin “hobbit”, w Internecie   Coyne   2016-11-25
No pasarán    Tonhasca Júnior   2023-03-04
Strzelby, zarazki, maszyny to zdecydowanie antyrasistowska książka. Dlaczego lewica jej nie kocha?   Barnett   2021-10-13
„ Całujące się” koralowce złapane in flagranti   Yong   2016-07-28
”Sygnalizowanie cnoty” może nas irytować. Cywilizacja byłaby jednak bez niego niemożliwa    Miller   2019-09-13
A jednak chorują na raka    Łopatniuk   2016-02-13
Czyste okrucieństwo cięć w pomocy żywnościowej   Lomborg   2017-08-07
Dalszy spadek zgonów z powodu raka   Novella   2019-02-04
Dlaczego mamy alergie?   Zimmer   2016-01-28
Dlaczego sądy nie powinny rozstrzygać o nauce     2018-12-13
Dlaczego większość zasobównie wyczerpuje się   Ridley   2014-05-04
Dlaczego zwierzęta są urocze?   Coyne   2014-12-30
Dziennik z Mozambiku: Demony w kurzu   Naskręcki   2018-03-30
Dziwaczne, wysysające krew czerwie jurajskie   Cobb   2014-06-28
Ewolucja, ptaki i kwiaty   Coyne   2014-06-02
Gigantyczne “paleonory” wykopane przez wymarłe ssaki   Coyne   2017-06-29
Grupy anty-GMO przegrywają sprawę sądową w Nigerii    i Nkechi Isaak   2022-07-30
Jak karakara wygrywa z osami   Cobb   2013-12-29
Kiedy zapada noc i ziemia jest ciemna   Tonhasca Júnior   2023-02-10
Kilka lekcji z rosyjskiej rewolucji. Jak kuszący radykalny nihilizm prowadzi do ekstremizmu   Geifman   2021-03-22
Komisja Europejska ukrywa naukę o pszczołach   Ridley   2017-05-03
Malaria pachnąca cytryną    Zimmer   2015-04-07
Małpo ty moja   Koraszewski   2015-04-17
Metamorfozy    Júnior   2022-04-09
Minęło 40 lat od wydania „Samolubnego genu” – śmiała książka Richarda Dawkinsa ostała się próbie czasu   Ridley   2016-02-17
Niezwykły pasikonik szklany   Naskręcki   2014-05-27
Nowe badanie wskazuje na jednego oszusta   Coyne   2016-08-18
Nowy i dziwaczny rodzaj mimikry: nasiona rośliny naśladują kształt i zapach odchodów zwierzęcych, by ułatwić roznoszenie ich przez żuki gnojowe   Coyne   2015-10-20
O porażkach wolności i lęku przed nauką   Dennett   2016-05-20
O rzeczywistości rasy i odrazie do rasizmu    i Brian Boutwell   2017-09-04
Obniżenie poprzeczki dla tradycyjnej medycyny chińskiej dla ideologii i zysku     2017-12-29
Olbrzymie armie o niezliczonych umiejętnościach    Tonhasca Júnior   2024-02-08
Osobisty mikrobiom w cyfrach   Zimmer   2014-08-14
Ostrogony nie są naprawdę “żywymi skamieniałościami”    Coyne   2015-07-29
Palestyńska intersekcjonalność z nazistami   Frantzman   2017-07-08
Pochwała ignorancji, czyli wiem, że nie wiem   Cullen   2017-01-11
Przykre niespodzianki, czyli czerniak i siwizna   Łopatniuk   2015-08-01
Przypuszczalnie złamana kość    Coyne   2015-06-04
Rozum i Wiara IICzyli takie sobie rozmowy o religijnych „prawdach” i problemach z nimi związanych.   Ferus   2015-11-22
Ryba z biodrami   Mayer   2016-03-30
Siedem narzędzi myślenia   Dennett   2014-11-19
Skrzydlaci oszuści i straż obywatelska   Young   2014-01-02
Tako rzecze antyszczepionkowa “wojowniczka mama”, Brittney Kara: jeśli szczepionki są tak wspaniałe, to dlaczego nie wspomina ich Biblia?     2018-04-26
Twardy kwiat do zgryzienia    Tonhasca Júnior   2023-02-22
Wielkoskrzydłe   Naskręcki   2014-04-02
Wierzący nagradzani za życia   Coyne   2014-12-21
Wpaść w amok. Empiryczna analiza szaleńczych zabójstw pokazuje, że wyłaniają się dwa różne wzorce.   King   2023-06-03
Wątpliwi pomocnicy    Tonhasca Júnior   2023-04-08
Świetna ewolucyjna innowacjaktóra okazała się zgubna   Yong   2015-12-10
Dlaczego odmawiamy dostrzegania jaśniejszej strony, choć powinniśmy   Pinker   2018-04-17
Krew, znój, łzy i pot   Tonhasca Júnior   2023-01-19
Mądrość w pułapce autorytetu   Witkowski   2020-04-18
Po prostu nie mogę się doczekać, aby znów wyruszyć w trasę   Tonhasca Júnior   2022-10-27
Pochwała jednoznaczności   Witkowski   2019-10-29
Z perspektywy naszego kurnika   Witkowski   2020-01-16
A co to takie włochate?   Łopatniuk   2016-04-02
A genomy ciągle kurczą się…   Zimmer   2016-11-22
A teraz dobre wiadomości: Sprawy naprawdę idą w dobrym kierunku   Pinker   2015-11-24
A polać wielką wodą…   Cipiur   2019-05-18
A.N. Wilson znowu kopie Darwina, tym razem w “Times”   Coyne   2017-09-07
Adam i Ewa: dwoje, czy więcej niż dwoje przodków?   Coyne   2017-01-07
Afrykańscy naukowcy wzywają do polityki poparcia biologii syntetycznej i innych innowacji   Agaba   2021-12-02
Agroekologia zmienia biednych farmerów w biedniejszych   Muhumuza   2022-06-09
AI – asystent lekarza   Novella   2020-12-09
AI: gorąca randka z “Sydneyem ”   Gotefridi   2023-03-15
Akademicki skandal: troje badaczy umyślnie publikowało fałszywe artykuły o „badaniach żałości”, by pokazać fatalne standardy akademickie w naukach społecznych   Coyne   2018-10-12
Akcja afirmatywna w wieloetnicznym narodzie   Hyams   2020-07-17
Aktywacja telomerazy mogłaby prowadzić do leczenia samej starości   Ridley   2015-10-27
Aktywiści anty-GMO w Afryce szerzą mity i strach, ale nie przedstawiają żadnych naukowych dowodów   Abutu   2023-08-14
Aktywność umysłowa nie zapobiega osłabieniu umysłowej sprawności   Novella   2018-12-15
Akupunktura jadu pszczelego: śmiercionośne znachorstwo, które może zabić     2018-04-23
Akupunktura kontra nauka, wersja lingwistyczna     2017-06-01
Akupunktura kwantowa   Novella   2019-04-23

« Poprzednia strona  Następna strona »
Polecane
artykuły

Lekarze bez Granic


Wojna w Ukrainie


Krytycy Izraela


Walka z malarią


Przedwyborcza kampania


Nowy ateizm


Rzeczywiste łamanie


Jest lepiej


Aburd


Rasy - konstrukt


Zielone energie


Zmiana klimatu


Pogrzebać złudzenia Oslo


Kilka poważnych...


Przeciwko autentyczności


Nowy ateizm


Lomborg


„Choroba” przywrócona przez Putina


„Przebudzeni”


Pod sztandarem


Wielki przekret


Łamanie praw człowieka


Jason Hill


Dlaczego BIden


Korzenie kryzysu energetycznego



Obietnica



Pytanie bez odpowiedzi



Bohaterzy chińskiego narodu



Naukowcy Unii Europejskiej



Teoria Rasy



Przekupieni



Heretycki impuls



Nie klanial



Cervantes



Wojaki Chrystusa


Listy z naszego sadu
Redaktor naczelny:   Hili
Webmaster:   Andrzej Koraszewski
Współpracownicy:   Jacek, , Małgorzata, Andrzej, Henryk