Prawda

Niedziela, 19 maja 2024 - 20:25

« Poprzedni Następny »


Niezwykły przypadek koewolucji i specyficzności zapylacz/storczyk


Jerry A. Coyne 2023-10-07

Pterygodium Catholicum.
Pterygodium Catholicum.

Kolega przysłał mi stary artykuł (z 2006 roku), ale jego wiek nie umniejsza spektakularności uzyskanych wyników. W skrócie wyniki są następujące: grupa 15 fenotypowo podobnych (ale prawdopodobnie nie blisko spokrewnionych) storczyków w południowo-zachodniej Afryce jest zapylana przez samice jednego gatunku pszczół, które zbierają olejek wytwarzany przez kwiaty i karmią nim swoje potomstwo.

Stanowi to problem, ponieważ storczyki zapylane są poprzez przyczepianie lepkiej pyłkowiny (woreczków pyłkowych) zebranych z kwiatu jednego gatunku do następnego kwiatu tego samego gatunku. (Storczyki w tej grupie nie ulegają samozapłodnieniu). Kiedy woreczki pyłkowe 15 różnych gatunków storczyków przyklejają się do pszczoły, jak roślina może mieć pewność, że jej własny pyłek zostanie przeniesiony na innego osobnika tego samego gatunku, a nie na innego osobnika innego gatunku, w takim przypadku zapylanie międzygatunkowe wytworzyłoby albo niezdolne do życia, albo źle przystosowane hybrydy?


Pszczoły i storczyki rozwiązały ten problem w bardzo sprytny sposób.


Ale cofnijmy się: artykuł z „American Journal of Botany” można zobaczyć bezpłatnie, klikając na link do pliku PDF.



Powodem, dla którego autor, Anton Pauw, rozpoczął trwające osiem lat badania, jest to, że jego zdaniem „konwencjonalna mądrość” w botanice informowała, że zależność grupy kwiatów od jednego gatunku zapylacza nie jest adaptacyjna. A nie jest dlatego, że jeśli jakieś wahania środowiska lub inny przypadek sprawią, że zapylacz stanie się rzadki (lub wręcz wyginie), kwiaty nie zostaną zapylone. Oznaczałoby to, że kwiaty powinny ewoluować, aby przyciągnąć kilka gatunków zapylaczy, ponieważ tym kwiatom, które mają wielu zapylaczy, grozi mniejsze niebezpieczeństwo, że same staną się rzadkie lub wyginą.


Wydaje się jednak, że tak nie jest w przypadku tej grupy 15 storczyków, które według obserwacji Pauwa pochodzą z trzech różnych rodzajów (filogeneza molekularna sugeruje również, że nie są one najbliższymi krewnymi, choć wyglądają niezwykle podobnie).  Jednak wszystkie zapylane są przez jedną pszczołę Rediviva peringueyi. Należy do rodzaju zwanego „długonogimi pszczołami olejkowymi”.


Kwiaty, jak powiedziałem, są podobne, wszystkie wytwarzają olejek zbierany przez pszczoły, żyją na tym samym obszarze i kwitną w tym samym czasie. Jak mówi autor:

W ekstensywnym systemie zapylania przez pszczoły olejkowe można wyróżnić podgrupy podobnych gatunków roślin. Do badanej grupy zalicza się 15 storczyków wydzielających olejki, które łączy następujący zespół cech kwiatowych: kwiaty bladożółtozielone bez rozległych czarnych plam; wydzielanie olejku kwiatowego jako nagroda dla zapylaczy; charakterystyczny ostry zapach; okres kwitnienia od 15 sierpnia do 25 października, szczyt we wrześniu; głębokość kwiatów 5–8 mm ryc. 1 a–n). Gatunki te występują w ścisłym powiązaniu ze sobą na nizinach regionu Cape Floral i obejmują przedstawicieli trzech rodzajów (Pterygodium, Corycium i Disperis). Zgodnie z tezą syndromu zapylania podobne cechy kwiatowe tej grupy wskazują na wspólnego zapylacza. Moim celem było sprawdzenie tej prognozy w drodze szeroko zakrojonych prac terenowych.

Ryc. 1 poniżejpokazuje, jak bardzo podobne są te kwiaty. Zapylająca pszczoła (R. poeringueyi) jest pokazana w środku.


Figure 1. The Rediviva peringueyi pollination guild. Center, the oil-collecting bee R. peringueyi, arrows indicate pollinarium attachment sites of orchid species. (a) Pterygodium catholicum. (b) P. alatum. (c) P. caffrum. (d) P. volucris. (e) Corycium orobanchoides. (f) Disperis bolusiana subsp. bolusiana. (g) D. villosa. (h) D. cucullata. (i) D. circumflexa subsp. circumflexa. (j) P. inversum. (k) P. hallii. (l) P. platypetalum. (m) D. ×duckittiae. (n) P. cruciferum. (o) D. capensis var. capensis. Attachment sites f–i after Steiner. Pollinarium attachment sites are confirmed in a–g. Pollination and/or pollinarium attachment are predicted in h–o on the basis of floral features. R. peringueyi 5× life size, orchids 2× life size. Images e, h, k by Bill Liltved.
Figure 1. The Rediviva peringueyi pollination guild. Center, the oil-collecting bee R. peringueyi, arrows indicate pollinarium attachment sites of orchid species. (a) Pterygodium catholicum. (b) P. alatum. (c) P. caffrum. (d) P. volucris. (e) Corycium orobanchoides. (f) Disperis bolusiana subsp. bolusiana. (g) D. villosa. (h) D. cucullata. (i) D. circumflexa subsp. circumflexa. (j) P. inversum. (k) P. hallii. (l) P. platypetalum. (m) D. ×duckittiae. (n) P. cruciferum. (o) D. capensis var. capensis. Attachment sites f–i after Steiner. Pollinarium attachment sites are confirmed in a–g. Pollination and/or pollinarium attachment are predicted in h–o on the basis of floral features. R. peringueyi 5× life size, orchids 2× life size. Images e, h, k by Bill Liltved.

Pszczoły zbierają również pyłek i nektar, ale nie z tych storczyków. Z tych 15 storczyków pobierają wyłącznie olejek kwiatowy (nie miałem pojęcia, że w ogóle istnieje) i robią to, jak widać na zdjęciu poniżej, chwytając roślinę środkowymi i tylnymi odnóżami i zbierając olejek zmodyfikowanymi przednimi odnóżami. W trakcie zbierania olejku pyłkowiny storczyka, które są lepkie, przyczepiają się do ciała pszczoły (i oczywiście dlatego kwiat wytwarza olejek i zapach, aby przyciągnąć pszczołę). Widać to również na zdjęciu poniżej.  


To oczywiście rodzi problem opisany powyżej. Jeśli woreczek pyłkowy jednego z 15 gatunków storczyków przyklei się do ciała pszczoły, jak można zagwarantować zapylenie storczyka tego samego gatunku, skoro nie ma gwarancji, że następny kwiat, który pszczoła odwiedzi, będzie pochodził z tego samego gatunku. (W końcu wszystkie storczyki kwitną w tym samym czasie.)


Odpowiedź jest najciekawszą częścią tej historii. Każdy stoczyk ewoluował tak, że przykleja pyłek do innej części ciała pszczoły. A każdy storczyk ma swoje żeńskie części rozmieszczone w taki sposób, że pyłkowina własnego gatunku, przyklejona do określonego miejsca na ciele pszczoły, zetknie się z własną, specyficzną dla gatunku szyjką słupka (częścią żeńską, która otrzymuje pyłek do zapłodnienia). W ten sposób zapylaniu krzyżowemu zapobiega specyfika miejsca, w którym pyłkowina przyczepia się do pszczoły, oraz specyficzne położenie żeńskiej części każdego storczyka, które ewoluowało w taki sposób, że gdy pszczoła zbierze olejek, właściwy pyłek wyląduje na właściwym znamieniu słupka.


Pauw odkrył to, identyfikując różne pyłkowiny kwiatów (mają różne kształty) i łapiąc dzikie pszczoły, aby zobaczyć, gdzie pyłkowiny każdego gatunku przyczepiły się do ciała. To właśnie pokazano na powyższym rysunku: każda litera odpowiada storczykom przedstawionym na krawędziach, a strzałki pokazują, gdzie na ciele pszczoły utknęły pyłkowiny każdego gatunku. Zauważ, że wszystkie są inne. Z wyjątkiem dwóch, czyli pyłków storczyków b i c, które przyczepiają się do pierwszego członu środkowych nóg pszczoły.


Czy to oznacza, że między storczykami b i c zachodzi zapylenie krzyżowe, co byłoby złe? Nie, ponieważ pyłkowiny tych dwóch gatunków mają różną długość, a znamiona słupka obu storczyków są tak rozmieszczone, aby każdy mógł pobrać pyłek odpowiedniego gatunku.


Jest to niezwykły przykład specyficzności w rozmieszczaniu pyłku; nie znam niczego podobnego! Poniżej, w „b” i „c” ryc. 3, widać, że pyłek przykleja się do bardzo określonych części ciała. W „b” pyłek kwiatu  przyczepia się do „basistarsi” pszczół na środkowych nogach (najbardziej dystalna część nogi), podczas gdy pyłkowiny storczyka Pterygodium volucris  przyczepiają się do powierzchni brzusznej na odwłoku pszczoły. Aby to osiągnąć, worki pyłkowe na kwiatach muszą znajdować się w bardzo różnych miejscach, a pszczoła musi zebrać olejek w określonym miejscu, by pyłkowina utknęła na właściwej części ciała.


(From paper): Fig. 3. Rediviva peringueyi pollination mechanism. (a) Female R. peringueyi collecting floral oil from the apex of the lip appendage of Pterygodium alatum with a rapid rubbing motion of the front tarsi. The bee hangs onto the lip appendage with the middle tarsi, onto which the pollinaria (visible) become attached. Bar: 3 mm. (b) Several pollinaria of P. catholicum attached precisely to the basitarsi of the middle legs of R. peringueyivia the sticky viscidia. Bar: 1 mm. (c) Pollinaria of Pterygodium volucris attached to the ventral surface of the last abdominal segment of R. peringueyi. Bar: 3 mm.
(From paper): Fig. 3. Rediviva peringueyi pollination mechanism. (a) Female R. peringueyi collecting floral oil from the apex of the lip appendage of Pterygodium alatum with a rapid rubbing motion of the front tarsi. The bee hangs onto the lip appendage with the middle tarsi, onto which the pollinaria (visible) become attached. Bar: 3 mm. (b) Several pollinaria of P. catholicum attached precisely to the basitarsi of the middle legs of R. peringueyivia the sticky viscidia. Bar: 1 mm. (c) Pollinaria of Pterygodium volucris attached to the ventral surface of the last abdominal segment of R. peringueyi. Bar: 3 mm.

Należy zauważyć, że w zjawisko to zaangażowanych jest kilka rodzajów ewolucji:


a.) Zbieżna ewolucja różnych, niepowiązanych ze sobą storczyków, w wyniku której rozwinęły wspólny zapach, wygląd i „wargę”, która pozwala pszczołom trzymać się podczas zbierania olejku.

b.) Rozbieżna ewolucja storczyków, w wyniku której u każdej z nich wykształciła się pozycja wargi i pyłkowiny, która przyklei pyłek do wcześniej czystej części ciała pszczoły

c.) Możliwa ewolucja zachowania pszczoły, tak że „wie” jak trzymać się każdego gatunku kwiatu, aby zebrać olejek (może to nie obejmować ewolucji genetycznej, ale po prostu wynikać z uczenia się).

 

Oto zdumiewający sposób, w jaki piętnaście różnych gatunków storczyków może zapylać przedstawicieli własnego gatunku, nawet jeśli wszystkie są obsługiwane przez ten sam gatunek zapylacza. Zdaniem Pauwa nie rozwiązuje to jednak problemu poruszonego na początku: taka specyfika sprawia, że cały system jest niepewny i może się zawalić, jeśli coś stanie się zapylaczowi. I rzeczywiście twierdzi, że stopień zapylenia gatunków storczyków znacznie się różni z roku na rok. 


Innym aspektem tego systemu jest możliwe wyginięcie pszczoły. W smutnym zakończeniu Pauw zauważa, że zanika zarówno siedlisko storczyków, jak i pszczół:

Największym wyzwaniem w tym badaniu był niedobór odpowiednich miejsc badawczych. Około 80% roślinności nizinnej zostało już przekształconych w wyniku urbanizacji i rolnictwa (Heijnius i in., 1999). Pozostały porozrzucane fragmenty siedlisk przyrodniczych, przeważnie o powierzchni mniejszej niż 1 ha. W wielu z tych fragmentów odnotowano brak R. peringueyi i powtarzające się niepowodzenia zapylania wszystkich storczyków. Prawdopodobnie straciliśmy już szansę na zrozumienie intrygujących kwiatów gatunków takich jak P. cruciferum, który utrzymuje się w mniej niż pięciu pozostałościach naturalnej roślinności, gdzie rzadko, jeśli w ogóle, odwiedzają je zapylacze. W przeciwieństwie do systemów zapylania w północnych regionach umiarkowanych, które prawie zawsze obejmują kilka ekologicznie równoważnych gatunków zapylaczy (Waser i in., 1996;  Fenster i in., 2004), opisany tutaj system zapylania jest zależny od pojedynczego gatunku owada. Stanowi to wyzwanie dla ochrony, ponieważ niski poziom nadmiarowości ekologicznej oznacza, że utrata R. peringueyi może spowodować powiązane wymieranie roślin w galerii zapylanej przez R. peringueyi . Wydaje się mało prawdopodobne, by grupa storczyków zapylana przez R. peringueyi przetrwała w nowoczesnym krajobrazie kulturowym bez unikalnego zaplanowania ochrony.

Jeśli pszczoła wyginie, wyginie także każdy z tych gatunków storczyków, gdyż ich rozmnażanie zależy od tych owadów. Jest tu o wiele więcej do zbadania i mam nadzieję, że próbują ocalić pewne siedliska zarówno dla roślin, jak i owadów. Ponieważ samo zapylenie zaobserwowano tylko u około pięciu z tych storczyków, pozostaje wiele pracy obserwacyjnej do wykonania. Co więcej, analiza DNA storczyków, wskazująca, że nie stanowią one „grupy monofiletycznej” (tj. nie są najbliższymi krewnymi), była raczej przybliżona i należy ją przeprowadzić przy użyciu bardziej nowoczesnych metod. Jeśli nie są swoimi najbliższymi krewnymi, mamy do czynienia z nowym i solidnym przypadkiem „ewolucji zbieżnej” (niespokrewnione gatunki rozwijające bardzo podobne cechy).


h/t: Martim


Link do oryginału: https://whyevolutionistrue.com/2023/09/29/a-remarkable-case-of-pollinator-orchid-coevolution/#

Why Evolution Is True, 29 września 2023

Tłumaczenie: Małgorzata Koraszewska



Jerry A. Coyne

Emerytowany profesor na wydziale ekologii i ewolucji University of Chicago, jego książka "Why Evolution is True" (Polskie wydanie: "Ewolucja jest faktem", Prószyński i Ska, 2009r.) została przełożona na kilkanaście języków, a przez Richarda Dawkinsa jest oceniana jako najlepsza książka o ewolucji.  Jerry Coyne jest jednym z najlepszych na świecie specjalistów od specjacji, rozdzielania się gatunków. Jest również jednym ze znanych "nowych ateistów" i autorem (wydanej również po polsku przez wydawnictwo "Stapis") książki "Faith vs Fakt". Jest wielkim miłośnikiem kotów i osobistym przyjacielem redaktor naczelnej.

Skomentuj Tipsa en vn Wydrukuj






Nauka

Znalezionych 1479 artykuły.

Tytuł   Autor   Opublikowany

Tajemnice życia płodowego   Zimmer   2014-06-07
Czy ludzkość zmierza w kierunku kanibalizmu?   Lomborg   2014-06-09
Milczenie świerszczy   Yong   2014-06-11
Maccartyzm w klimatologii   Lomborg   2014-06-12
Życie w powiększeniu   Zimmer   2014-06-13
Pół miliarda lat samobójstw   Yong   2014-06-14
Amfisbeny   Naskręcki   2014-06-16
Pająk upodabnia się do ptasich odchodów   Coyne   2014-06-17
Tajemny składnik młodej krwi: oksytocyna?   Zimmer   2014-06-18
Architektura żywych budowli   Yong   2014-06-20
Krótko żyjące zwierzęta i bardzo stare rośliny   Zimmer   2014-06-21
Pająki społeczne wybierają swoje kariery   Yong   2014-06-23
Skrzydlata rzeka   Zimmer   2014-06-25
Dziwaczne, wysysające krew czerwie jurajskie   Cobb   2014-06-28
Zaproszenie na wspólne polowanie   Yong   2014-06-30
Marnie napisany artykuł o uroczym gryzoniu   Coyne   2014-07-03
Jak przypadek pomógł znaleźć sposób na suszę   Klein Leichman   2014-07-04
Przespać atak antybiotyku   Yong   2014-07-06
Uprawy GM są dobre dla środowiska     2014-07-08
Trawa w uchu. Ale po co?   Coyne   2014-07-09
Zoo w gębie   Zimmer   2014-07-10
Suplementem diety wampira   Yong   2014-07-11
Seks z wymarłym ludem dał gen życia na wysokości   Yong   2014-07-15
Lot przez przestrzeń wewnętrzną   Zimmer   2014-07-17
Osa, która zatyka wejście do gniazda trupami mrówek   Yong   2014-07-18
Czym jest nauka i dlaczego ma nas obchodzić?   Sokal   2014-07-22
Nowy, opierzony i czteroskrzydły dinosaur   Coyne   2014-07-23
Oglądanie oceanu brzęczącym nosem   Zimmer   2014-07-26
OLBRZYMI owad wodny (i kilka innych)   Coyne   2014-07-28
Najbardziej zdumiewające oczy w przyrodzie   Yong   2014-07-29
Czy jaszczurka “widzi” skórą   Yong   2014-08-02
Nowy opierzony dinozaur sugeruje, że większość dinozaurów miała pióra   Coyne   2014-08-03
Ewolucja łożyska a seksualna zimna wojna   Yong   2014-08-04
Energia odnawialna nie działa   Ridley   2014-08-07
Czy istnieje darwinowskie wyjaśnienie ludzkiej kreatywności?   Dennett   2014-08-08
Gry zespołowe plemników   Yong   2014-08-09
Oko ciemieniowe hatterii   Mayer   2014-08-10
Osobisty mikrobiom w cyfrach   Zimmer   2014-08-14
Izraelska koszulka EKG monitoruje serca, ratuje życie   Shamah   2014-08-17
Grantowie na Galápagos i ich hybrydowe gatunki   Coyne   2014-08-18
Ośmiornica dba o swoje jaja przez 53 miesiące, a potem umiera   Yong   2014-08-20
Cuda genetyki: arbuz bez pestek   Coyne   2014-08-25
Utracony sposób tworzenia ciał przed istnieniem  szkieletów i muszli   Yong   2014-08-26
Usunięcie obrzydzenia z medycyny mikrobiomowej   Zimmer   2014-08-28
Tysiąc współpracujących, samorganizujących się robotów   Yong   2014-08-30
Nogoprządki   Naskręcki   2014-09-01
Drzewo zapachów   Zimmer   2014-09-02
Sposób szczura na trujący pokarm   Yong   2014-09-05
Raczkowanie w ewolucji   Zimmer   2014-09-06
Zmieniająca kolor płachta zainspirowana skórą ośmiornicy   Yong   2014-09-08
Erotyczna doniosłość bioder walenia   Zimmer   2014-09-11
Co słychać w sprawie globalnego ocieplenia?   Ridley   2014-09-14
Foki mogły przenieść gruźlicę do Nowego Świata   Yong   2014-09-16
Jak kolibry odzyskały utracone przez ptaki odczuwanie słodyczy   Yong   2014-09-19
Ochrona zagrożonych węży wymaga ochrony węży jadowitych   Yong   2014-09-22
Uo, zaklinacz deszczu   Naskręcki   2014-09-23
Co wypadające dyski mówią nam o 700 milionach lat ewolucji   Zimmer   2014-09-24
O korzyściach przypadkowego kolekcjonowania okazów   Naskręcki   2014-09-28
Pradawnym płazom odrastały kończyny   Coyne   2014-09-29
Trawienny drapacz chmur   Yong   2014-09-30
Ofiary naszych ułomności   Naskręcki   2014-10-02
Jak dotarliśmy do teraźniejszości   Ridley   2014-10-05
Dlaczego kod genetyczny nie jest uniwersalny   Cobb   2014-10-06
Ukryte przed wzrokiem zoo w Central Park   Zimmer   2014-10-09
Specjacja sympatryczna we wnętrzu cykady   Yong   2014-10-10
Nocny stukot małych kopyt   Naskręcki   2014-10-12
Wojna domowa w ludzkim genomie     2014-10-13
Penetrujący jaskinie robot-wąż wzorowany na grzechotnikach rogatych   Yong   2014-10-19
Dowody ewolucji: wideo i nieco dłuższy wywód   Coyne   2014-10-22
O wyższości lepszego nad gorszym   Zimmer   2014-10-26
Powódź pożyczonych genów u powstania maleńkich ekstremistów   Yong   2014-10-30
Tak, neandertalczycy to my!   Mayer   2014-11-04
Zgarbowate   Naskręcki   2014-11-10
Facet od nauki przeciwko GMO   Coyne   2014-11-12
Figę dostaje ten kto rano wstaje   Yong   2014-11-13
Mrówki, altruizm i poświęcenie   Ridley   2014-11-14
Norowirus: doskonały patogen wyłania się z cienia   Zimmer   2014-11-15
Siedem narzędzi myślenia   Dennett   2014-11-19
Ciężarna wężyca przygotowuje się do macierzyństwa   Yong   2014-11-20
Naturalność życia rodzinnego?   Zimmer   2014-11-25
Genetyka kocich łat   Coyne   2014-11-26
Świat RNA   Cobb   2014-11-27
Dymorfizm płciowy i ideologia   Coyne   2014-12-01
Gdy mutację przeciwstawić infekcji – od anemii sierpowatej do Eboli   Lewis   2014-12-02
Nasze wewnętrzne pióra   Zimmer   2014-12-03
Nie wszystkie muchy latają   Naskręcki   2014-12-04
Jest tuż za tobą! Czy to duch, czy robot?   Yong   2014-12-06
Najstarsza jak dotąd identyfikacja medycyny sądowej   Coyne   2014-12-10
Samoloty bez pilotów i samochody bez kierowców   Ridley   2014-12-11
Tworzenie dowodów w oparciu o politykę   Ridley   2014-12-16
Pisklę przypominające wyglądem i zachowaniem trującą gąsienicę   Coyne   2014-12-18
Wierzący nagradzani za życia   Coyne   2014-12-21
Nietoperze owocożerne także mają sonar (ale niezbyt dobry)   Yong   2014-12-22
Implanty WiFi do mózgu dla rąk robota   Zimmer   2014-12-25
Naukowcy wprowadzają nową tradycję kulturową dzikim sikorkom   Yong   2014-12-26
List do władz Uniwersytetu  Harvarda   Pinker   2014-12-26
Dlaczego zwierzęta są urocze?   Coyne   2014-12-30
Dlaczego te dziwaczne owady sygnalizują ostrzeżenie po ataku?   Yong   2014-12-31
Leniwce i pancerniki widzą czarno-biały świat   Yong   2015-01-06
Ogony CAT osłabiają centralny dogmat – dlaczego ma to znaczenie i dlaczego nie ma   Cobb   2015-01-08

« Poprzednia strona  Następna strona »
Polecane
artykuły

Lekarze bez Granic


Wojna w Ukrainie


Krytycy Izraela


Walka z malarią


Przedwyborcza kampania


Nowy ateizm


Rzeczywiste łamanie


Jest lepiej


Aburd


Rasy - konstrukt


Zielone energie


Zmiana klimatu


Pogrzebać złudzenia Oslo


Kilka poważnych...


Przeciwko autentyczności


Nowy ateizm


Lomborg


„Choroba” przywrócona przez Putina


„Przebudzeni”


Pod sztandarem


Wielki przekret


Łamanie praw człowieka


Jason Hill


Dlaczego BIden


Korzenie kryzysu energetycznego



Obietnica



Pytanie bez odpowiedzi



Bohaterzy chińskiego narodu



Naukowcy Unii Europejskiej



Teoria Rasy



Przekupieni



Heretycki impuls



Nie klanial



Cervantes



Wojaki Chrystusa


Listy z naszego sadu
Redaktor naczelny:   Hili
Webmaster:   Andrzej Koraszewski
Współpracownicy:   Jacek, , Małgorzata, Andrzej, Henryk