Prawda

Czwartek, 9 maja 2024 - 00:13

« Poprzedni Następny »


Czy “bezpłciowe” bakterie tworzą biologiczne gatunki?


Jerry A. Coyne 2024-03-06

Wzrastająca kolonia Escherichia coli (Wikipedia)

Wzrastająca kolonia Escherichia coli (Wikipedia)



Koncepcja gatunku biologicznego, w skrócie „BSC”, została opracowana i udoskonalona przez ewolucjonistę Ernsta Mayra w latach trzydziestych i czterdziestych XX wieku jako sposób na konceptualizację odrębnych grup – „gatunków” – które widzimy u większości roślin i zwierząt. Działa to następująco (moim zdaniem) i obejmuje również sposób, w jaki konceptualizujemy różne gatunki biologiczne.

Gatunek biologiczny składa się z grupy populacji, które tam, gdzie współistnieją w przyrodzie, wymieniają geny poprzez rozmnażanie. Dwie populacje, które współistnieją na jednym obszarze, ale nie wymieniają genów, są uważane za członków różnych gatunków biologicznych. 

Jedną z zalet BSC jest to, że umożliwia nam natychmiastowe rozwiązanie problemu gatunku, który umykał Darwinowi: dlaczego przyroda jest podzielona na odrębne zgrupowania, a nie istnieje jako kontinuum, zgrupowania najbardziej widoczne tam, gdzie współistnieją? Zgodnie z BSC problem „pochodzenia gatunków” staje się po prostu problemem „pochodzenia barier uniemożliwiających krzyżowanie się” – i jest to problem możliwy do rozwiązania. (Ponownie, zobacz Coyne'a i Orra, aby poznać nasze podejście do powstawania tych zgrupowań.)


Oczywiście są problemy z tym pojęciem (nie jest to definicja aprioryczna, ale próba konceptualizacji słowami tego, co widzimy w naturze). Problemy te obejmują ocenę populacji żyjących na różnych obszarach, takich jak wyspy archipelagu, sposób radzenia sobie z grupami, które w niewielkim stopniu tworzą hybrydy tam, gdzie współistnieją oraz, co najważniejsze w tym artykule, co robimy z gatunkami bezpłciowymi, pozbawionymi możliwości wymiany genów. Wszystkie te kwestie omawiamy w pierwszym rozdziale mojej książki Speciation (2009) napisanej z Allenem Orrem, ale jedną z kwestii, których nie rozwiązaliśmy właściwie, była kwestia organizmów bezpłciowych.


A co z tymi uprzykrzonymi organizmami „bezpłciowymi”? Jak możemy konceptualizować gatunki w grupach takich jak bakterie? Cóż, pierwszą rzeczą, jaką musimy ustalić, jest to, czy tworzą rozróżnialne zgrupowania, takie jak ptaki czy żółwie. Jeśli tak nie jest, nie ma potrzeby konceptualizowania nieistniejących zgrupowań. W naszej książce z 2009 roku dokonaliśmy przeglądu literatury, która była wówczas skąpa, i zdecydowaliśmy, że dowody na to, czy bakterie (uważane za bezpłciowe) tworzą gatunki, były mieszane, ale z pewnością były wśród nich pewne zgrupowania. Dlatego ograniczyliśmy resztę książki do organizmów rozmnażających się płciowo. Mimo to „gatunkom” bakterii nadaje się nazwy, takie jak E. coli, ale czy wszystkie bakterie uważane za E. coli naprawdę stanowią członków odrębnego zgrupowania? Jeśli tak, to jak?


Od tego czasu literatura się rozwinęła, a poniższy artykuł, który przeoczyłem i który ma już siedem lat, całkiem nieźle udowadnia, że przynajmniej wśród bakterii istnieją gatunki i, co ważniejsze, są one konceptualizowane w sposób podobny do BSC. Innymi słowy, istnieją zgrupowania bakterii, a każde zgrupowanie charakteryzuje się zdolnością do wymiany genów między osobnikami. Członkowie różnych zgrupowań nie wymieniają jednak genów. Innymi słowy, bakterie składają się głównie z genetycznie izolowanych zgrupowań. Autorzy, choć badają jedynie bakterie (istnieją inne organizmy rozmnażające się bezpłciowo, jak wrotki bdelloidalne), dochodzą do wniosku, że życie w ogóle jest zgodne z BSC. To trochę zbyt ekspansywny wniosek (patrz tytuł!), ale ich wyniki dla bakterii wydają się dobre.

Kliknij na link, aby przeczytać, lub zobacz plik PDF tutaj.


Kluczem do tego artykułu jest uznanie, że bakterie w rzeczywistości nie są całkowicie bezpłciowe, chociaż często rozmnażają się w ten sposób. Ale mają też taką formę seksu, w której genomy dwóch różnych osobników mogą zbliżyć się do siebie i rekombinować, tworząc nowe geny. Proces ten, zwany rekombinacją homologiczną,  zachodzi poprzez kontakt między komórkami lub przeniesienie DNA przez rurki („pilusy”) łączące różne jednostki. Proces ten nazywa się koniugacją.


Oto zdjęcie z Wikipedii przedstawiające dwie komórki bakteryjne przemieszczające DNA przez pilusy:


Ten plik udostępniony jest na licencji Creative Commons Attribution-Share Alike 4.0 International.

Ten plik udostępniony jest na licencji Creative Commons Attribution-Share Alike 4.0 International.



Ten ruch jest jednokierunkowy: DNA (pojedynczy chromosom z dwuniciowym DNA) od jednego osobnika przemieszcza się do drugiego. Następnie może nastąpić forma rozmnażania „płciowego”, w której różne kopie tego samego genu mogą ustawić się obok siebie i rekombinować, tworząc nowy gen. Podobny proces zachodzi podczas mejozy (tworzenia gamet) w organizmach rozmnażających się płciowo.


U bakterii to mieszanie się podobnych genów nazywa się rekombinacją homologiczną, ponieważ zmienia skład genu poprzez rekombinację jego DNA z DNA podobnego genu w innej bakterii. Istnieją inne formy wymiany DNA u bakterii, w których fragment DNA lub „plazmid” jednego osobnika po prostu wstawia się gdzieś indziej w genomie innego osobnika, ale nie jest to rekombinacja w tradycyjnym sensie, ponieważ nie obejmuje dwóch różnych kopii tego samego genu, które dokonują rekombinacji w celu utworzenia nowego genu. Artykuł Bobay i Ochmana dotyczy rekombinacji homologicznej.


Stosowana przez nich metoda określania, czy dwa osobniki danego gatunku bakterii mogą w ten sposób rekombinować swoje DNA, jest skomplikowana i lepiej pozostawię ją ekspertom. Powiem jednak, że polega to na wykazaniu, że jednostki w grupie mają te same warianty w danym segmencie genu (zsekwencjonowano 10 000 zasad), jak inne jednostki w grupie. Na przykład, w jednym dziesięciozasadowym odcinku DNA, osobnik może mieć GTTACTCTAA, inny będzie miał GTTAGTCTAA, jeszcze inny GTTACTCTAC, a jeszcze inny GTTACTAC, reprezentujący kombinacje zasad DNA, które mogą wystąpić w wyniku rekombinacji.


Jeśli widzisz ten wzór wśród osobników określonego gatunku bakterii, oznacza to, że ma miejsce rekombinacja homologiczna – bakteryjny „seks” zachodzi. Ta forma rekombinacji nazywana jest rekombinacją „homoplastyczną”, ponieważ wszystkie warianty powstają w wyniku mutacji pojedynczego pierwotnego genomu obecnego u osobnika, który założył gatunek.


Jedną z alternatyw jest to, że mamy do czynienia z dwoma spokrewnionymi gatunkami, u których podobne sekwencje DNA wyglądają jedynie tak, jakby przeszły rekombinację homologiczną, ponieważ dwie grupy miały wspólnego przodka, a następnie potomkowie mieli podobne („zbieżne”) mutacje. Zjawisko to, zwane „rekombinacją niehomoplastyczną”, nie jest spowodowane wymianą genetyczną.


Autorzy mają sposoby na rozróżnienie tych dwóch typów rekombinacji i opracowali stosunek, który nazywają „h/m”, pokazujący stosunek stopnia rekombinacji homoplastycznej (prawdziwy „seks”) do rekombinacji niehomoplastycznej (niezależne mutacje w różnych grupach, które powierzchownie naśladują „seks” ). Im wyższy stosunek h/m, tym więcej osobników w tej grupie uprawia „seks”.


Autorzy obliczyli stosunki h/m dla 91 nazwanych „gatunków” bakterii, używając oczywiście dużej liczby sekwencji genomów dla każdego gatunku, ponieważ trzeba zbadać zmienność między osobnikami w tym segmencie liczącym 10 000 zasad. (Przeprowadzili także symulacje, aby sprawdzić, czy potrafią odróżnić „h” od „m”.) Okazuje się, że ponad połowa z 91 nazwanych gatunków bakterii, które zbadali, pasowała do gatunków biologicznych, w przypadku których istniały dowody na rekombinację „h” między osobnikami. Oto jeden poniżej, w którym wzrasta stosunek h/m osiągając asymptotę, gdy przyglądali się większej liczbie szczepów. (Zwiększa to zdolność wykrywania udostępnionych wariantów). 54 z 91 nazwanych gatunków bakterii tak wyglądało, więc BSC obejmuje co najmniej połowę nazwanych gatunków bakterii, a autorzy pobrali duże próbki bakterii.


Gatunek biologiczny u bakterii:



Tutaj można zobaczyć to, co uznano za jeden gatunek, ale po dodaniu większej liczby szczepów zaobserwowano dwa zgrupowania, z których jedno zachowywało się jak powyżej, ale drugie, w porównaniu z pierwszym, wykazywało bardzo niski stosunek h/m, co wskazuje, że między tymi grupami nie występowała rekombinacja homologiczna. Oznacza to, że były to różne „gatunki biologiczne”. Kiedy wyeliminowano grupę o niskim h/m, B. pseudomallei zachował się jak trzeba. Zatem mamy tu dwa gatunki, którym nadano tę samą nazwę, być może dlatego, że miały podobną morfologię lub wymagania hodowlane, albo dlatego, że odległość genetyczna między nimi (wskazująca na czas separacji) była dość mała, co sugeruje niedawne pochodzenie. Te „tajemnicze gatunki” zaobserwowano u 21 z 91 wymienionych gatunków bakterii.


Dwa gatunki biologiczne bakterii, które występowały pod jedną nazwą:



A trzecia grupa sama w sobie miała niski stosunek h/m, niezależnie od tego, ile szczepów obejmowała, więc w ogóle nie było możliwości oceny przepływu genów – być może dlatego, że te gatunki po prostu nie przechodzą żadnej rekombinacji homologicznej. Tu jest jeden:



Zatem 73 z 91 przebadanych grup wykazało wzorce zgodne z koncepcją gatunku opartą na izolacji reprodukcyjnej.


Aby sprawdzić, czy ich metoda rzeczywiście wykryła grupy analogiczne do gatunków biologicznych u bardziej znanych zwierząt, autorzy przeprowadzili ten sam rodzaj testu h/m dla dwóch par spokrewnionych, ale wyraźnie odrębnych gatunków biologicznych; jednym z nich był pokrewny gatunek Drosophila melanogaster i D. simulans, a drugim Homo sapiens i szympans Pan troglodytes. Jak widać poniżej, udało im się wykryć izolację reprodukcyjną pomiędzy grupami przy użyciu podobnego fragmentu o długości 10 000 par zasad. (We wszystkich przypadkach porównywano wiele tych samych sekwencji różnych osobników po lewej stronie z jedną sekwencję gatunku po prawej, dlatego „inny” gatunek tworzy linię prostą: mamy jedną sekwencję w porównaniu z wieloma sekwencjami w drugim gatunków, a wszystkie porównania wykazują niski stosunek h/m.)



Ludzie kontra szympansy, także dobre gatunki biologiczne:



Wniosek jest zatem taki, że BSC całkiem nieźle radzi sobie z konceptualizacją gatunków bakterii: istnieją grupy, które wymieniają segmenty genów i inne grupy (różne „gatunki”), które nie wymieniają DNA poprzez rekombinację homologiczną. Pamiętajcie: wszystko to zostało ocenione na podstawie sekwencji DNA, a nie bezpośredniej wymiany genów.


Najważniejszy wniosek (z artykułu):

Fakt, że gatunek można uniwersalnie zdefiniować na podstawie przepływu genów, oznacza, że w procesie specjacji we wszystkich formach życia działa wiele tych samych czynników. Różnice we właściwościach genomicznych (takich jak ploidalność, częstotliwość rekombinacji i rozmnażanie oraz tempo nabywania genów) i w parametrach demograficznych (takich jak wielkość populacji, rozmieszczenie geograficzne i tempo migracji) będą miały wpływ na tempo specjacji drobnoustrojów w stosunku do organizmów płciowych. Jednakże zastosowanie pojedynczego kryterium BSC opartego na genomie do wytyczenia gatunków umożliwia zdefiniowanie gatunków i badanie specjacji w podobnych ramach w całym drzewie życia.

Cóż, muszą przyjrzeć się innym domniemanie bezpłciowym grupom, aby sprawdzić, czy ta metoda pokazuje również istnienie krzyżujących się grup reprodukcyjnie izolowanych od innych tego typu grup, ale przynajmniej w przypadku bakterii widzimy, że wiele z nich tworzy zgrupowania. Pozostają dwa pytania:


1.) Czym zatem jest „specjacja” u bakterii?  
Jednym z najbardziej intrygujących wyników tej pracy jest to, że jeśli weźmie się pod uwagę pary „gatunków” bakterii, stopień izolacji reprodukcyjnej między nimi nie jest dodatnio skorelowany z czasem, jaki je dzieli, ocenianym na podstawie „odległości genetycznej” lub całego genomu rozbieżność między nimi. Trudno to zrozumieć, ponieważ sugeruje, że w przeciwieństwie do organizmów rozmnażających się płciowo, takich jak muszki owocowe i ssaki, bariery reprodukcyjne nie tworzą się jako prosty produkt uboczny czasu oddzielenia się od wspólnego przodka. Dzieje się tak, ponieważ w tych grupach bariery reprodukcyjne są zwykle produktem ubocznym rozbieżności między populacjami w wyniku doboru naturalnego i dryfu genetycznego, które z biegiem czasu genetycznie oddzielają gatunki.


Dlaczego nie dzieje się tak w przypadku bakterii? Nie mam pojęcia! Moją jedyną sugestią jest to, że „tworzenie się gatunku” może zachodzić u bakterii tak szybko, że po prostu nie da się korelować czasu z izolacją reprodukcyjną. Oznaczałoby to, że jest to praktycznie natychmiastowe.


2.) Dlaczego bakterie tworzą zgrupowania? 
U bardziej znanych zwierząt zgrupowania powstają, ponieważ po powstaniu barier reprodukcyjnych grupa krzyżująca się może swobodnie przystosować się do swojego środowiska bez „zanieczyszczania” przez inne gatunki, które mogłoby rozmyć zgrupowanie. Dywergencja genetyczna znajduje odzwierciedlenie nie tylko w izolacji reprodukcyjnej, ale także w wyglądzie i zachowaniu organizmów. Może to dotyczyć również bakterii: każdy klaster może reprezentować grupę przystosowaną do określonej niszy ekologicznej. Trudno byłoby to przetestować na bakteriach występujących w naturze, ale można by to przetestować na bakteriach chorobotwórczych, których siedlisko (nas) można łatwiej zbadać. O ile pamiętam, każdy gatunek bakterii działa na swój sposób, ale to nie jest odpowiedź na pytanie.

_______________

Reference: Bobay LM, Ochman H. Biological species are universal across Life’s domains. Genome Biol Evol. 2017 Feb 10;9(3):491–501. doi: 10.1093/gbe/evx026.


Link do oryginału: https://whyevolutionistrue.com/2024/02/25/do-asexual-bacteria-form-biological-species/

Why Evolution Is True, 25 lutego 2024

Tłumaczenie: Małgorzata Koraszewska



Jerry A. Coyne


Emerytowany profesor na wydziale ekologii i ewolucji University of Chicago, jego książka "Why Evolution is True" (Polskie wydanie: "Ewolucja jest faktem", Prószyński i Ska, 2009r.) została przełożona na kilkanaście języków, a przez Richarda Dawkinsa jest oceniana jako najlepsza książka o ewolucji.  Jerry Coyne jest jednym z najlepszych na świecie specjalistów od specjacji, rozdzielania się gatunków. Jest również jednym ze znanych "nowych ateistów" i autorem książki "Faith vs Fakt" (wydanej również po polsku przez wydawnictwo "Stapis)". Jest wielkim miłośnikiem kotów i osobistym przyjacielem redaktor naczelnej.


Skomentuj Tipsa en vn Wydrukuj






Nauka

Znalezionych 1477 artykuły.

Tytuł   Autor   Opublikowany

Kameleon przekazuje różne informacje różnymi częściami ciała   Yong   2013-12-14
Paradoksalne cechy genetyki inteligencji   Ridley   2013-12-18
Wielki skandal z biopaliwami   Lomborg   2013-12-19
Przedwczesna wiadomość o śmierci samolubnego genu   Coyne   2013-12-22
Czy jest życie na Europie?   Ridley   2013-12-22
Nowa data udomowienia kotów: około 5300 lat temu – i to w Chinach   Coyne   2013-12-26
Na Zeusa, natura jest przeżarta rują i korupcją   Koraszewski   2013-12-26
Proces cywilizacji   Ridley   2013-12-28
Jak karakara wygrywa z osami   Cobb   2013-12-29
Żebropławy, czyli dziwactwa ewolucji   Coyne   2013-12-30
Czy może istnieć sztuka bez artysty?    Wadhawan   2013-12-30
Zderzenie mentalności   Koraszewski   2014-01-01
Skrzydlaci oszuści i straż obywatelska   Young   2014-01-02
Delfiny umyślnie narkotyzują się truciznami rozdymków   Coyne   2014-01-04
Długi cień anglosfery   Ridley   2014-01-05
Ciemna materia genetyki psychiatrycznej   Zimmer   2014-01-06
Co czyni nas ludźmi?   Dawkins   2014-01-07
Twoja choroba na szalce   Yong   2014-01-08
Czy mamut włochaty potrzebuje adwokata?   Zimmer   2014-01-09
Pradawne rośliny kwitnące znalezione w bursztynie   Coyne   2014-01-10
Ratując gatunek możesz go niechcący skazać   Yong   2014-01-11
Ewolucja ukryta w pełnym świetle   Zimmer   2014-01-13
Koniec humanistyki?   Coyne   2014-01-15
Jak poruszasz nogą, która kiedyś była płetwą?   Yong   2014-01-16
Jak wyszliśmy na ląd, kość za kością   Zimmer   2014-01-19
Twoja wewnętrzna mucha   Cobb   2014-01-22
Ukwiał żyje w antarktycznym lodzie!   Coyne   2014-01-25
Dlaczego poligamia zanika?   Ridley   2014-01-26
Wspólne pochodzenie sygnałów płodności   Cobb   2014-01-28
Ewolucja i Bóg   Coyne   2014-01-29
O delfinach, dużych mózgach i skokach logiki   Yong   2014-01-30
Dziennikarski „statek upiorów” Greg Mayer   Mayer   2014-01-31
Dlaczego leniwce wypróżniają się na ziemi?   Bruce Lyon   2014-02-02
Moda na kopanie nauki   Coyne   2014-02-03
Neandertalczycy: bliscy obcy   Zimmer   2014-02-05
O pochodzeniu dobra i zła   Coyne   2014-02-05
Sposób znajdowania genów choroby   Yong   2014-02-07
Czy humaniści boją się nauki?   Coyne   2014-02-07
Kiedy zróżnicowały się współczesne ssaki łożyskowe?   Mayer   2014-02-10
O przyjaznej samolubności   Koraszewski   2014-02-12
Skąd wiesz, że znalazłeś je wszystkie?   Zimmer   2014-02-15
Nauka odkrywa nową niewiedzę o przeszłości   Ridley   2014-02-18
Żyjące gniazdo?   Zimmer   2014-02-19
Planeta tykwy pospolitej   Zimmer   2014-02-21
Nowe niezwykłe skamieniałości typu “Łupki z Burgess”   Coyne   2014-02-22
Dziennik z Mozambiku: Pardalota   Naskręcki   2014-02-23
Wskrzeszona odpowiedź z kredy na “chorobę królów”   Yong   2014-02-26
Dziennik z Mozambiku: Sybilla     2014-03-01
Spojrzeć ślepym okiem   Yong   2014-03-02
Intelektualne danie dnia  The Big Think   Coyne   2014-03-04
Przeczołgać się przez mózg i nie zgubić się   Zimmer   2014-03-05
Gdzie podziewają się żółwiki podczas zgubionych lat?   Yong   2014-03-10
Supergen, który maluje kłamcę   Yong   2014-03-14
Idea, którą pora oddać na złom   Koraszewski   2014-03-15
Zwycięstwa bez chwały   Ridley   2014-03-17
Twarde jak skała   Naskręcki   2014-03-18
Pasożyty informacyjne   Zimmer   2014-03-19
Seymour Benzer: humor, historia i genetyka   Cobb   2014-03-21
Kto to był Per Brinck?   Naskręcki   2014-03-23
Potrafimy rozróżnić między przynajmniej bilionem zapachów   Yong   2014-03-25
Godzina Ziemi czyli o celebrowaniu ciemności   Lomborg   2014-03-27
Słonie słyszą więcej niż ludzie   Yong   2014-03-30
Niebo gwiaździste nade mną, małpa włochata we mnie   Koraszewski   2014-03-31
Wielkoskrzydłe   Naskręcki   2014-04-02
Najstarsze żyjące organizmy   Coyne   2014-04-03
Jak zmienić bakterie jelitowe w dziennikarzy   Yong   2014-04-06
Eureka! Sprytne wrony to odkryły   Coyne   2014-04-07
Sukces upraw GM w Indiach   Lomborg   2014-04-09
Wirus, który sterylizuje owady, ale je pobudza   Yong   2014-04-12
Przystosować się do zmiany klimatu   Ridley   2014-04-14
Jeden oddech, który zmienił planetę   Naskręcki   2014-04-16
Najgorsze w karmieniu komarów jest czekanie   Yong   2014-04-17
Kłopotliwa podróż w przyszłość   Ridley   2014-04-19
Pierwsze spojrzenie na mikroby współczesnych łowców zbieraczy     2014-04-23
Seksizm w nauce o jaskiniowych owadach   Coyne   2014-04-26
Musza bakteria zaprasza inne muszki na uczty owocowe   Yong   2014-04-27
Zachwycający rabuś, który liczy sto milionów lat   Cobb   2014-04-28
Mądrość (małych) tłumów   Zimmer   2014-04-29
Tak bada się ewolucję inteligencji u zwierząt   Yong   2014-05-02
Fantastyczna mimikra tropikalnego pnącza   Coyne   2014-05-03
Dlaczego większość zasobównie wyczerpuje się   Ridley   2014-05-04
Pomidory tworzą pestycydy z zapachu swoich sąsiadów   Yong   2014-05-07
Potrawy z pasożytów   Zimmer   2014-05-08
Technologia jest często matką nauki, a nie odwrotnie   Ridley   2014-05-09
Montezuma i jego flirty   Coyne   2014-05-11
Insekt dziedziczy mikroby z plemnika taty   Yong   2014-05-12
Polowanie na nietoperze   Naskręcki   2014-05-14
Zmień swoje geny przez zmianę swojego życia   Coyne   2014-05-15
Obrona śmieciowego DNA   Zimmer   2014-05-17
Gdzie są badania zwierzęcych wagin?   Yong   2014-05-20
Niemal ssaki   Naskręcki   2014-05-21
Zobaczyć jak splątane są gałęzie drzewa   Zimmer   2014-05-23
Dlaczego ramiona ośmiornicy nie plączą się   Yong   2014-05-24
Niezwykły pasikonik szklany   Naskręcki   2014-05-27
Wąż zgubiony i ponownie odnaleziony   Mayer   2014-05-28
Niespodziewani krewni mamutaków   Yong   2014-05-30
Trochę lepszy  świat   Ridley   2014-05-31
Tam, gdzie są ptaki   Mayer   2014-06-01
Ewolucja, ptaki i kwiaty   Coyne   2014-06-02
Jestem spełniony   Naskręcki   2014-06-04

« Poprzednia strona  Następna strona »
Polecane
artykuły

Lekarze bez Granic


Wojna w Ukrainie


Krytycy Izraela


Walka z malarią


Przedwyborcza kampania


Nowy ateizm


Rzeczywiste łamanie


Jest lepiej


Aburd


Rasy - konstrukt


Zielone energie


Zmiana klimatu


Pogrzebać złudzenia Oslo


Kilka poważnych...


Przeciwko autentyczności


Nowy ateizm


Lomborg


„Choroba” przywrócona przez Putina


„Przebudzeni”


Pod sztandarem


Wielki przekret


Łamanie praw człowieka


Jason Hill


Dlaczego BIden


Korzenie kryzysu energetycznego



Obietnica



Pytanie bez odpowiedzi



Bohaterzy chińskiego narodu



Naukowcy Unii Europejskiej



Teoria Rasy



Przekupieni



Heretycki impuls



Nie klanial



Cervantes



Wojaki Chrystusa


Listy z naszego sadu
Redaktor naczelny:   Hili
Webmaster:   Andrzej Koraszewski
Współpracownicy:   Jacek, , Małgorzata, Andrzej, Henryk