Prawda

Piątek, 29 marca 2024 - 02:11

« Poprzedni Następny »


Alfred Sturtevant: bohater genetyki


Jerry A. Coyne 2017-02-06

(Z artykułu) Zdjęcie Alfreda Sturtevanta, 1922 r., z History of the Marine Biological Laboratory.  Licensed as Creative Commons Attribution-NonCommercial-Share Alike 3.0
(Z artykułu) Zdjęcie Alfreda Sturtevanta, 1922 r., z History of the Marine Biological Laboratory.  Licensed as Creative Commons Attribution-NonCommercial-Share Alike 3.0

Alfred Henry Sturtevant (1891-1970), jeden z pierwszych genetyków Drosophila, jest także jednym z moich osobistych bohaterów naukowych. Jako student w Columbia i członek słynnego “pokoju much” Thomasa Hunta Morgana, Sturtevant dokonał nadzwyczajnego badania, pokazując, że geny na chromosomach nie tylko są uszeregowane liniowo, ale że mierząc liczbę rekombinacji (czyli “crossing over”) między różnymi mutacjami tych genów (widzianymi przez ich efekty na ciele muchy) możemy zdobyć pojęcie nie tylko o kolejności tych genów, ale także o tym, jak daleko od siebie są położone. Procedura, którą stworzył jako student i opublikował, kiedy miał zaledwie 22 lata, jest tą samą procedurą, jakiej używamy dzisiaj do “mapowania” genów.

Osiągnął jednak znacznie więcej: robił krzyżówki  “dających się reperować” defektów genetycznych, co utorowało drogę genetyce biochemicznej, znalazł dowody na efekt zmian ustawienia chromosomów w hamowaniu crossing over, wykonał jedne z pierwszych prac nad genetyką specjacji Drosophila simulans (większość jego prac była z koniem roboczym genetyki, Drosophila melanogaster) i znalazł dowody na „efekt matczyny”: fakt, że genetyczna budowa matki (u ślimaka) może wpłynąć na cechę (kierunek skrętu muszli) u potomka zamiast na samą budowę genetyczną potomka. Zrobił jednak coś znacznie więcej; przeczytaj link na początku tego akapitu. Był wściekle inteligentny i wszechstronny. Moim zdaniem powinien był dostać Nagrodę Nobla, ale jego osiągnięcia, przynajmniej wczesne, weszły do nagrody danej jego mentorowi, Thomasowi Huntowi Morganowi.


W “Genetics” jest nowy artykuł Mariany Wolfner i Danny’ego Millera z ślicznym tytułem (poniżej), który naświetla inne osiągnięcia  Sturtevanta: znalezienie nierównych crossing over między chromosomami. (Kliknij na link do artykułu: http://www.genetics.org/content/204/3/833 ).



O co chodzi z Sturtevantem wchodzącym do baru? No cóż, Sturtevanta zafrapowała obserwacja mutacji “Bar’ na chromosomie X u D. melanogaster, która powoduje małe oczy (patrz diagram poniżej). Muchy z oczyma Bar wykazywały niezwykle wysokie poziomy „mutacji”: około 1 na 1000 potomków samicy nosicielki tego genu albo powracało do “dzikiego typu” (normalne oczy), albo stawało się “ultra-Bar” (wyjątkowo wąskie oczy; patrz diagram dla obu).


To tempo mutacji było znacznie wyższe niż normalna mutacja genów (około 0,000001) i Sturtevant, opierając się na poprzednich swoich badaniach nad crossing-over między chromosomami (wymiana materiału genetycznego między parami “homologicznych” chromosomów podczas tworzenia się gamet), postawił hipotezę, że “mutacje” Bar nie były przypadkami zmian w samym genie, ale zmianami w budowie chromosomu wokół tego genu. Przez skomplikowaną serię krzyżówek genetycznych z użyciem zmutowanych genów otaczających odcinek Bar, Sturtevant był w stanie pokazać, że mutanty Bar powstają ze zjawiska znanego jako „nierówne crossing over”.


Normalnie podczas “mejozy”, procesu genetycznego tworzenia gamet w organizmach diploidalnych, “chromosomy homologiczne” zestawiają się w pary (mamy dwie kopie każdego z naszych chromosomów, a więc mamy 23 pary lub 46 razem; muchy Sturtevanta miały 8 razem). To zestawianie się w pary jest zasadnicze, by zapewnić, że homologi rozdzielają się, ponieważ każdy pójdzie do innego jaja lub plemnika (jaja i plemniki mają tylko połowę liczby chromosomów normalnych komórek i kiedy zachodzi zapłodnienie, powraca normalna liczba). Podczas zestawiania się w pary chromosomy homologiczne mogą wymieniać geny, kiedy rozłamują się i odcinki różnych homologów zlewają się z drugim homologiem. (Z jakiegoś powodu, który nie w pełni rozumiemy, samice Drosophila przechodzą ten proces, ale samce nie przechodzą. Właśnie obserwacja, że zmiany Bar widać było tylko od zmutowanych matek, ale nie ojców, która doprowadziła Sturtevanta do przypuszczenia, że chodzi o crossing-over zamiast o zwykłą mutację.)


Zazwyczaj crossing over jest dokładne z nukleotydami rozłamującymi się i zlewającymi w tym samym miejscu, jeśli więc jeden chromosom ma allel A, a drugi allel A’genu, zamienią się pozycjami w doskonałym porządku. (Oczywiście, reszta przylegających genów przejdzie razem.) Czasami jednak rekombinacja nie będzie doskonała i możesz otrzymać dwie kopie genu na jednym chromosomie i żadnej na drugim. Na przykład,  ———A——— zestawione w parę z ———A’——— może dać ———AA’——— na jednym chromosomie i —————— na drugim. Jeden chromosom kończy z dwiema kopiami całego genu; drugi nie ma żadnej.  


Przez używanie chytrych krzyżówek z mutacjami otaczającymi odcinek Bar, Sturtevant pokazał, że właśnie to powodowało zjawisko Bar. Kiedy muchy o normalnych oczach podlegały nierównemu crossing over, mogły dawać muchę z dwiema całymi kopiami odcinka genu, powodując wąskie oczy „Bar”. Mogły także, skojarzone z normalną muchą, dawać muchę z trzema kopiami odcinku genu i jeszcze węższymi „ultra-Bar” oczyma. Kiedy mucha z oczyma Bar traciła jedną ze swoich kopii dzięki nierównemu crossing over, powracała do stanu normalnej muchy.


W czasie, kiedy Sturtevant wykonywał te eksperymenty w latach 1920., nie było sposobu na potwierdzenie jego hipotezy przez bezpośrednie spojrzenie na chromosomy. Wkrótce potem jednak odkryto, że w gruczołach ślinowych much były „chromosomy poligeniczne”, w których DNA replikował się setki razy, a więc można było rzeczywiście obejrzeć fizyczną budowę chromosomów pod mikroskopem. Tutaj, na przykład, są dwa ramiona drugiego chromosomu, oba na fotografiach i w interpretacji. Fizyczne markery („paski”) chromosomów poligenicznych są diagnostyczne: te same dla wszystkich osobników gatunku.



Kiedy Bridges (1936)Muller et al. (1936) zbadali chromosomy z gruczołów ślinowych u much normalnych, much Bar i much ultra-Bar, potwierdzili, że oczy “Bar” istotnie pochodzą z duplikacji odcinka genu badanego przez Sturtevanta dziesięć lat wcześniej i że muchy ultra-Bar pochodzą z potrojenia tego odcinka, jak to pokazuje diagram poniżej z artykułu Wolfner i Millera.



Dlaczego jest to ważne? Ponieważ nierówne crossing over jest jednym z głównych źródeł powstawania nowych genów w ewolucji. Prowadzi do duplikacji pojedynczego genu na jednym chromosomie, a kiedy to dzieje się, ewolucja może doprowadzić te dwie kopie do rozejścia się i przyjęcia nowych funkcji. Ponadto, nierówne crossing-over może stworzyć całe rodziny genów, które pochodzą od jednej kopii, ale ich funkcje rozeszły się po duplikacji, potrojeniu i tak dalej. Jest to jeden ze sposobów, na jakie genom rozwija się i na jaki możemy zyskać nowe geny z nowymi funkcjami. W ten sposób, na przykład, różne hemoglobiny: α, β, γ i δ, każda z inna funkcją, pochodzą od wspólnego przodka.


Oryginalne badanie Sturtevanta było więc zwiastunem naszego zrozumienia, jak powstaje nowa informacja genetyczna – przez pomyłkę w rekombinacji. Podobnie, nowa informacja genetyczna może powstać poprzez mutacje w jednym genie – także „pomyłce” w replikacji genu. Gdyby crossing over i replikacja genów zachodziły w sposób doskonały, nie byłoby ewolucji.


Sturtevant, nazywany przez wielu przyjaciół “Sturt”, był podobno wspaniałym człowiekiem, wolnym od obłudy i arogancji i (jak całe potomstwo Morgana – może z wyjątkiem H. J. Mullera) orzeźwiająco wolny od pragnienia zdobywania zasług za każde osiągnięcie. Żal mi, że nigdy nie spotkałem Sturtevanta, ale znam kilka osób, które znały go dobrze i bez wyjątku wszyscy mówią o nim jako o wielkim facecie.


Sturtevant został później profesorem genetyki w Cal Tech w Pasadenie, gdzie pozostał na resztę życia. I, jak porządny Drosophilista, do samego końca własnymi rekami popychał muszki. Tutaj jest jako już starszy mężczyzna we własnym „pokoju much”, robiąc coś, co jest obecnie zabronione w laboratoriach: paląc tuż obok pojemnika na eter, który usypia muchy i jest WYSOCE ŁATWOPALNY.


Alfred H. Sturtevant, Profesor biologii, emeritus, w swoim laboratorium w Caltech w 1965 r. Zdjęcie James McClanahan. Credit: Caltech Archives
Alfred H. Sturtevant, Profesor biologii, emeritus, w swoim laboratorium w Caltech w 1965 r. Zdjęcie James McClanahan. Credit: Caltech Archives

h/t: Matthew Cobb

 

Alfred Sturtevant a hero of genetics

Why Evolution Is True, 24 stycznia 2017

Tłumaczenie: Małgorzata Koraszewska



Jerry A. Coyne


Profesor (emeritus) na wydziale ekologii i ewolucji University of Chicago, jego książka "Why Evolution is True" (Polskie wydanie: "Ewolucja jest faktem", Prószyński i Ska, 2009r.) została przełożona na kilkanaście języków, a przez Richarda Dawkinsa jest oceniana jako najlepsza książka o ewolucji.  Jerry Coyne jest jednym z najlepszych na świecie specjalistów od specjacji, rozdzielania się gatunków.  Jest wielkim miłośnikiem kotów i osobistym przyjacielem redaktor naczelnej.


Skomentuj Tipsa en vn Wydrukuj






Nauka

Znalezionych 1469 artykuły.

Tytuł   Autor   Opublikowany

Kameleon przekazuje różne informacje różnymi częściami ciała   Yong   2013-12-14
Paradoksalne cechy genetyki inteligencji   Ridley   2013-12-18
Wielki skandal z biopaliwami   Lomborg   2013-12-19
Przedwczesna wiadomość o śmierci samolubnego genu   Coyne   2013-12-22
Czy jest życie na Europie?   Ridley   2013-12-22
Nowa data udomowienia kotów: około 5300 lat temu – i to w Chinach   Coyne   2013-12-26
Na Zeusa, natura jest przeżarta rują i korupcją   Koraszewski   2013-12-26
Proces cywilizacji   Ridley   2013-12-28
Jak karakara wygrywa z osami   Cobb   2013-12-29
Żebropławy, czyli dziwactwa ewolucji   Coyne   2013-12-30
Czy może istnieć sztuka bez artysty?    Wadhawan   2013-12-30
Zderzenie mentalności   Koraszewski   2014-01-01
Skrzydlaci oszuści i straż obywatelska   Young   2014-01-02
Delfiny umyślnie narkotyzują się truciznami rozdymków   Coyne   2014-01-04
Długi cień anglosfery   Ridley   2014-01-05
Ciemna materia genetyki psychiatrycznej   Zimmer   2014-01-06
Co czyni nas ludźmi?   Dawkins   2014-01-07
Twoja choroba na szalce   Yong   2014-01-08
Czy mamut włochaty potrzebuje adwokata?   Zimmer   2014-01-09
Pradawne rośliny kwitnące znalezione w bursztynie   Coyne   2014-01-10
Ratując gatunek możesz go niechcący skazać   Yong   2014-01-11
Ewolucja ukryta w pełnym świetle   Zimmer   2014-01-13
Koniec humanistyki?   Coyne   2014-01-15
Jak poruszasz nogą, która kiedyś była płetwą?   Yong   2014-01-16
Jak wyszliśmy na ląd, kość za kością   Zimmer   2014-01-19
Twoja wewnętrzna mucha   Cobb   2014-01-22
Ukwiał żyje w antarktycznym lodzie!   Coyne   2014-01-25
Dlaczego poligamia zanika?   Ridley   2014-01-26
Wspólne pochodzenie sygnałów płodności   Cobb   2014-01-28
Ewolucja i Bóg   Coyne   2014-01-29
O delfinach, dużych mózgach i skokach logiki   Yong   2014-01-30
Dziennikarski „statek upiorów” Greg Mayer   Mayer   2014-01-31
Dlaczego leniwce wypróżniają się na ziemi?   Bruce Lyon   2014-02-02
Moda na kopanie nauki   Coyne   2014-02-03
Neandertalczycy: bliscy obcy   Zimmer   2014-02-05
O pochodzeniu dobra i zła   Coyne   2014-02-05
Sposób znajdowania genów choroby   Yong   2014-02-07
Czy humaniści boją się nauki?   Coyne   2014-02-07
Kiedy zróżnicowały się współczesne ssaki łożyskowe?   Mayer   2014-02-10
O przyjaznej samolubności   Koraszewski   2014-02-12
Skąd wiesz, że znalazłeś je wszystkie?   Zimmer   2014-02-15
Nauka odkrywa nową niewiedzę o przeszłości   Ridley   2014-02-18
Żyjące gniazdo?   Zimmer   2014-02-19
Planeta tykwy pospolitej   Zimmer   2014-02-21
Nowe niezwykłe skamieniałości typu “Łupki z Burgess”   Coyne   2014-02-22
Dziennik z Mozambiku: Pardalota   Naskręcki   2014-02-23
Wskrzeszona odpowiedź z kredy na “chorobę królów”   Yong   2014-02-26
Dziennik z Mozambiku: Sybilla     2014-03-01
Spojrzeć ślepym okiem   Yong   2014-03-02
Intelektualne danie dnia  The Big Think   Coyne   2014-03-04
Przeczołgać się przez mózg i nie zgubić się   Zimmer   2014-03-05
Gdzie podziewają się żółwiki podczas zgubionych lat?   Yong   2014-03-10
Supergen, który maluje kłamcę   Yong   2014-03-14
Idea, którą pora oddać na złom   Koraszewski   2014-03-15
Zwycięstwa bez chwały   Ridley   2014-03-17
Twarde jak skała   Naskręcki   2014-03-18
Pasożyty informacyjne   Zimmer   2014-03-19
Seymour Benzer: humor, historia i genetyka   Cobb   2014-03-21
Kto to był Per Brinck?   Naskręcki   2014-03-23
Potrafimy rozróżnić między przynajmniej bilionem zapachów   Yong   2014-03-25
Godzina Ziemi czyli o celebrowaniu ciemności   Lomborg   2014-03-27
Słonie słyszą więcej niż ludzie   Yong   2014-03-30
Niebo gwiaździste nade mną, małpa włochata we mnie   Koraszewski   2014-03-31
Wielkoskrzydłe   Naskręcki   2014-04-02
Najstarsze żyjące organizmy   Coyne   2014-04-03
Jak zmienić bakterie jelitowe w dziennikarzy   Yong   2014-04-06
Eureka! Sprytne wrony to odkryły   Coyne   2014-04-07
Sukces upraw GM w Indiach   Lomborg   2014-04-09
Wirus, który sterylizuje owady, ale je pobudza   Yong   2014-04-12
Przystosować się do zmiany klimatu   Ridley   2014-04-14
Jeden oddech, który zmienił planetę   Naskręcki   2014-04-16
Najgorsze w karmieniu komarów jest czekanie   Yong   2014-04-17
Kłopotliwa podróż w przyszłość   Ridley   2014-04-19
Pierwsze spojrzenie na mikroby współczesnych łowców zbieraczy     2014-04-23
Seksizm w nauce o jaskiniowych owadach   Coyne   2014-04-26
Musza bakteria zaprasza inne muszki na uczty owocowe   Yong   2014-04-27
Zachwycający rabuś, który liczy sto milionów lat   Cobb   2014-04-28
Mądrość (małych) tłumów   Zimmer   2014-04-29
Tak bada się ewolucję inteligencji u zwierząt   Yong   2014-05-02
Fantastyczna mimikra tropikalnego pnącza   Coyne   2014-05-03
Dlaczego większość zasobównie wyczerpuje się   Ridley   2014-05-04
Pomidory tworzą pestycydy z zapachu swoich sąsiadów   Yong   2014-05-07
Potrawy z pasożytów   Zimmer   2014-05-08
Technologia jest często matką nauki, a nie odwrotnie   Ridley   2014-05-09
Montezuma i jego flirty   Coyne   2014-05-11
Insekt dziedziczy mikroby z plemnika taty   Yong   2014-05-12
Polowanie na nietoperze   Naskręcki   2014-05-14
Zmień swoje geny przez zmianę swojego życia   Coyne   2014-05-15
Obrona śmieciowego DNA   Zimmer   2014-05-17
Gdzie są badania zwierzęcych wagin?   Yong   2014-05-20
Niemal ssaki   Naskręcki   2014-05-21
Zobaczyć jak splątane są gałęzie drzewa   Zimmer   2014-05-23
Dlaczego ramiona ośmiornicy nie plączą się   Yong   2014-05-24
Niezwykły pasikonik szklany   Naskręcki   2014-05-27
Wąż zgubiony i ponownie odnaleziony   Mayer   2014-05-28
Niespodziewani krewni mamutaków   Yong   2014-05-30
Trochę lepszy  świat   Ridley   2014-05-31
Tam, gdzie są ptaki   Mayer   2014-06-01
Ewolucja, ptaki i kwiaty   Coyne   2014-06-02
Jestem spełniony   Naskręcki   2014-06-04

« Poprzednia strona  Następna strona »
Polecane
artykuły

Lekarze bez Granic


Wojna w Ukrainie


Krytycy Izraela


Walka z malarią


Przedwyborcza kampania


Nowy ateizm


Rzeczywiste łamanie


Jest lepiej


Aburd


Rasy - konstrukt


Zielone energie


Zmiana klimatu


Pogrzebać złudzenia Oslo


Kilka poważnych...


Przeciwko autentyczności


Nowy ateizm


Lomborg


„Choroba” przywrócona przez Putina


„Przebudzeni”


Pod sztandarem


Wielki przekret


Łamanie praw człowieka


Jason Hill


Dlaczego BIden


Korzenie kryzysu energetycznego



Obietnica



Pytanie bez odpowiedzi



Bohaterzy chińskiego narodu



Naukowcy Unii Europejskiej



Teoria Rasy



Przekupieni



Heretycki impuls



Nie klanial



Cervantes



Wojaki Chrystusa


Listy z naszego sadu
Redaktor naczelny:   Hili
Webmaster:   Andrzej Koraszewski
Współpracownicy:   Jacek, , Małgorzata, Andrzej, Henryk