Nareszcie odkryta mutacja krępaka nabrzozaka


Jerry A. Coyne 2016-06-10


Historia krępaka nabrzozaka, Biston betularia, jest jedną z najsłynniejszych opowieści ewolucyjnych znanych szerokiej publiczności i jest stałą strawą podręczników biologii. Jest atrakcyjna, bo jest przykładem “ewolucji w działaniu”: przypadkiem, w którym możemy zobaczyć ewolucję dziejącą się za życia jednego lub dwóch ludzkich pokoleń i zrozumieć siły doboru naturalnego, który powoduje zmianę ewolucyjną.

Ta zmiana była prosta: zastąpienie pierwotnie jasno ubarwionej ćmy ( zwanej  odmianą “typica”; patrz poniżej) odmianą ciemno zabarwioną (“carbonaria“), co zaszło w Wielkiej Brytanii między około rokiem 1850 a 1900. Różnica między tymi dwiema odmianami polegała na różnicach w jednym genie, z odmianą carbonaria dominująca nad typica, a więc posiadanie jednej kopii „ciemnego” allelu czyniło cię całkiem ciemnym. (Istnieje także pośrednia, „półciemna” postać zwana “insularia“.)


Dlaczego zmiana ewolucyjna? (Pamiętajmy, ewolucję można zdefiniować jako “zmianę genetyczną w populacji”). Hasło w Wikipedii “Peppered moth evolution” daje dobre streszczenie.


Wczesne eksperymenty pokazały, że prawdopodobną przyczyną było żerowanie ptaków. Ptaki są drapieżnikami kierującymi się wzrokiem i zbierają ćmy z drzew. Przed rewolucją przemysłową drzewa brytyjskie miały jasny kolor, często ozdobione były porostami, a więc jasne ćmy były zakamuflowane i mniej narażone na zjedzenie niż ciemne. Pierwszą ciemną ćmę opisano jako rzadkość w 1848 r. w Manchesterze, a potem częstość występowania ciemnej odmiany rosła raptownie, kiedy sadze z kominów fabrycznych przyciemniły drzewa i zabiły porosty.


Ta zmiana koloru drzew, najbardziej wyraźna na terenach przemysłowych, takich jak Manchester, odwróciła przewagę selekcyjną odmian ciemnej i jasnej: ciemne ćmy były teraz lepiej zakamuflowane i mniej zagrożone zjedzeniem. Częstość występowania tej odmiany bardzo wzrosła w wielu miejscach: do niemal 100% w ponurym Manchesterze (przepraszam, Matthew). Wszystkie te zmiany zaszły w ciągu około 50 lat, a więc dobór naturalny był bardzo silny.


Tutaj jest zdjęcie pokazujące odmiany jasną i ciemną na drzewach przyciemnionych i “normalnych”. Można zobaczyć, jak ćmy niewłaściwego koloru wyróżniają się i byłyby oczywiście widoczne dla ptaków szukających posiłku.


Przyciemnione sadzą drzewo:



Drzewo nie narażone na zanieczyszczenie. Proszę zauważyć nakrapiane barwy odmiany typica, które zlewają się z korą drzewa:



Po wejściu w życie praw o czystym powietrzu w latach 1950. w Wielkiej Brytanii zanieczyszczenia zmalały i drzewa zaczęły odzyskiwać swój normalny, jasny wygląd. Jak można się spodziewać częstość występowania jasnej odmiany wzrosła i w większości miejsc przekracza 70%.


Eksperymenty Bernarda Kettlewella w latach 1950., w których umieszczał ćmy na drzewach a potem ponownie je chwytał, sugerowały hipotezę ptaków drapieżnych, ponieważ rzadziej łapał ponownie ciemne ćmy umieszczone w jasnych lasach niż jasne ćmy, co sugerowało, że niewłaściwie ubarwione ćmy częściej ginęły. Było odwrotnie, kiedy umieszczał ćmy w zanieczyszczonych lasach. Inne badania, w których także umieszczano ćmy na drzewach, sugerowały ten sam scenariusz.


Były jednak problemy z zaprojektowaniem i wykonaniem tych eksperymentów i w 1998 r. narobiłem odrobinę szumu przez wskazanie tych problemów oraz powiedzenie, że pokazanie, iż przyczyną zmiany są ptaki drapieżne, jest sugestywne, ale nie rozstrzygające. Brytyjscy ewolucjoniści, niezmiernie przywiązani do tej sprawy, nieco mnie demonizowali, a kreacjoniści, oczywiście, podchwycili moje zastrzeżenia i nadużyli ich do rzucania wątpliwości na całą ewolucję. Jeśli podręcznikowy przykład doboru naturalnego jest wadliwy, twierdzili, to całe przedsięwzięcie darwinowskie jest błędne.


Jednak Michael Majerus, badacz z Cambridge, od 2001 r. zaczął powtarzać porządnie eksperymenty uwolnienia i ponownego złapania (używał tylko jasnych lasów, bo ciemnych, zanieczyszczone już nie było) i otrzymał te same wyniki, jakie otrzymał Kettewell: w tych jasnych lasach ciemne ćmy, wypuszczone razem z jasnymi, były mniej często chwytane ponownie i Majerus widział ptaki zjadające te ćmy. (Niestety, zmarł zanim praca została opublikowana, ale jego koledzy napisali artykuł i opublikowali go.) Wyniki Majerusa wraz z obserwacją, że ten sam gatunek w Ameryce Północnej doświadcza takich samych zmian w częstości występowania odmian w miarę wzrostu i spadku zanieczyszczeń w USA, przekonały mnie, że historia ciem jest zupełnie solidna. Nie ma wątpliwości, że mamy tu przypadek ewolucji drogą doboru naturalnego w działaniu i wiemy, jaki rodzaj selekcji zachodzi.


Wiedzieliśmy od dziesięcioleci, że różnica między odmianami carbonaria typica jest spowodowana zmianami w jednym genie, bo krzyżowanie pokazywało segregację mendlowską, z carbonaria zachowującym się jako allel dominujący. Nie wiedzieliśmy jednak, o który gen chodzi, chociaż w ostatnich latach ograniczono to do liczącego 400 tysięcy zasad odcinka genomu ćmy. Chociaż fakt, że jest to przypadek ewolucji drogą doboru naturalnego, nie zależy od wiedzy, który dokładnie gen bierze w tym udział, dla pełnej historii od genu do koloru do sił ekologicznych (drapieżnictwo ptaków) miło byłoby znać ten gen.


Duża grupa badaczy donosi obecnie w “Nature”, że znaleźli ten gen. W artykule autorstwa Arjen E. van’tHof i in. (odnośnik poniżej) identyfikują gen powodujący różnice barw ciem jako cortex, dobrze znany gen, który badano u muszek owocowych (Drosophila). Towarzyszący mu artykuł w tym samym numerze „Nature” autorstwa Nicola Nadeau i in. (odnośnik poniżej) pokazuje, że mutacje w cortex biorą udział w tworzeniu wzorów i w mimikrze u wielu gatunków Lepidoptera. 


Tutaj są istotne rezultaty pracy van’t Hoff i in.:


(From the paper): Probability density for the age of the carb-TE mutation inferred from the recombination pattern in the carbonaria haplotypes (maximum density at 1819 shown by dotted line; first record of carbonaria in 1848 shown by dashed line).
(From the paper): Probability density for the age of the carb-TE mutation inferred from the recombination pattern in the carbonaria haplotypes (maximum density at 1819 shown by dotted line; first record of carbonaria in 1848 shown by dashed line).

Wreszcie, artykuł Nadeau i in., który w piśmie znajduje się bezpośrednio po tym artykule, pokazuje, że u motyli rodzaju Heliconius, który jest pełen gatunków z mimikrą, jak również z “ostrzegawczym ubarwieniem”, cortex bierze udział w rozwoju łusek, a więc prawdopodobnie również w zabarwieniu łusek, chociaż nadal może odgrywać jakąś rolę w podziale komórkowym podczas tworzenia się jajeczek.  


Wynik
. Jak powiedziałem, uważam tę pracę za nagrodę na deser: znaliśmy już główne punkty historii – że podstawą zmiany adaptacyjnej w ubarwieniu motyla w oparciu o drapieżnictwo ptaków był jeden gen. Teraz wiemy, że tym genem jest cortex.


Wiemy także, że zmianę w cortex, powodującą zmianę ubarwienia ćmy z jasnej na ciemną, spowodowało wstawienie ruchomego transpozonu, nie zaś „konwencjonalna” zmiana w jednej zasadzie sekwencji DNA. Jest to nadal „mutacja”, ale duża, zmieniająca ilość produktu genu. Mogą istnieć inne adaptacje oparte o wstawianie lub usuwanie transpozonów, ale ja ich nie znam. (Czytelnicy, którzy posiadają taką wiedzę, powinni o tym napisać poniżej.)


Mutacja pojawiła się na krótko przed zmianą środowiska – zanieczyszczeniem – która spowodowała ewolucję różnic ubarwienia. Jest to interesujące, ale nie było konieczne, bo takie mutacje pojawiają się nieustannie i mogą pozostawać w populacji na zawsze. Choć bowiem dobór naturalny wyplenia takie geny z populacji (ciemne ćmy byłyby upośledzone przed rewolucją przemysłową) mutacja wstawia je z powrotem, a więc rezerwuar rzadko występujących mutacji, które istnieją w populacji, może być podstawą nowych adaptacji, jeśli zmieni się środowisko. (Nazywa się to „równowagą mutacji/selekcji”. Pamiętajmy jednak, że te mutacje nie pozostają w populacji w celu dostarczenia przyszłej ewolucji adaptacyjnej. Błędy w DNA zdarzają się losowo, nie mogą przewidywać przyszłych potrzeb organizmu i czasami, choć rzadko, okazują się użyteczne.)


Na koniec: ten artykuł oraz artykuł o Heliconius pokazują, że choć muszki owocowe są dobrym „organizmem modelowym” – gatunkiem, który wiele nauczył nas o rozwoju i genetyce (większość tego co wiemy o genetyce mendlowskiej, zostało wypracowane na Drosophila) – nie mówią nam wiele o ewolucji Biston betularia. Jest tak z prostego powodu: muchy nie mają łusek, a więc nie można używać Drosophila do badania koloru łusek. W tym wypadku, co widzimy tak często w ewolucji, gen, który robi coś w jednym gatunku, może zostać dokooptowany do całkiem innej funkcji w drugim gatunku. Mogliśmy to zrozumieć dopiero, kiedy zdobyliśmy nowe narzędzia genetyczne i rozwojowe w ciągu ostatnich 30 lat.


h/t: Matthew Cobb, Jonathan

_________

van’t Hof, A. et al. 2016. The industrial melanism mutation in British peppered moths is a transposable element. Nature 534:102-105.

Nadeau, N. J. et al. 2016.  The gene cortex controls mimicry and crypsis in butterflies and moths. Nature 534:106-110.


Peppered moth mutation discovered at last

Why Evolution Is True, 3 czerwca 2016

Tłumaczenie: Małgorzata Koraszewska



Jerry A. Coyne


Profesor na wydziale ekologii i ewolucji University of Chicago, jego książka "Why Evolution is True" (Polskie wydanie: "Ewolucja jest faktem", Prószyński i Ska, 2009r.) została przełożona na kilkanaście języków, a przez Richarda Dawkinsa jest oceniana jako najlepsza książka o ewolucji.  Jerry Coyne jest jednym z najlepszych na świecie specjalistów od specjacji, rozdzielania się gatunków.  Jest wielkim miłośnikiem kotów i osobistym przyjacielem redaktor naczelnej.