Prawda

Środa, 24 kwietnia 2024 - 18:59

« Poprzedni Następny »


Mimikra chemiczna u mszyc


Jerry Coyne 2015-02-19

Dużo pisałem o mimikrze morfologicznej u zwierząt: wyewoluowanym podobieństwie wyglądu jednego gatunku do innego albo do tła środowiskowego. Ta mimikra może chronić zwierzęta przed wzrokiem drapieżników lub, jeśli jesteś drapieżnikiem, ukryć cię przed twoją potencjalną zdobyczą.

Ta druga sytuacja, w której zwierzęta przypominają kogoś lub coś innego, żeby mogły zabić lub zranić członków innych gatunków, nazywa się mimikrą agresywną. O intrygującym nowym przykładzie tego informuje praca w The Proceedings of the National Academy of Sciences autorstwa Adriána Salazara i sześciu kolegów (wolny dostęp, odnośnik poniżej). Ta mimikra jednak dotyczy chemiizamiast wyglądu. W tym nowym przypadku mszyce wyewoluowały do wydzielania węglowodorów, które znajdują się na larwach mrówek, z którymi te mszyce są normalnie stowarzyszone. Ta mimikra oszukuje mrówki, które nie widzą zbyt dobrze, ale są czułe na sygnały chemiczne. Mrówki niosą więc mszyce do mrowiska i wkładają je do komory lęgowej, po czym podstępne mszyce przekłuwają larwy i wysysają hemolimfę.


Cała historia jest bardzo skomplikowana, więc sporo pominę. Mszyca, Paracletus cimiformis, znajduje się na ogół w Europie, ale także w Azji i Afryce Północnej. Żyje na korzeniach roślin i, żeby sprawy jeszcze bardziej skomplikować, jest stowarzyszona z kilkoma gatunkami mrówek. Autorzy badali Tetramorium semilaeve, która jest powszechna w Hiszpanii, gdzie odbywało się badanie. Cykl życia tej mszycy, jak u większości mszyc, jest bardzo złożony, ponieważ żyje naprzemiennie na dwóch roślinach-gospodarzach: drzewie pistacji terpentynowej  i na trawach. Dodatkowo mszyce mogą istnieć albo jako uskrzydlone, albo bezskrzydłe oraz jako seksualne i aseksualne. Aseksualne rozmnażają się przez partenogenezę: matka trzyma niezapłodnione, ale diploidalne jaja (stworzone bez normalnego mejotycznego podziału komórki) w swoim ciele i rodzi żywe mszyce. Potomstwo jest więc klonami matki.


Wreszcie – co najważniejsze dla naszych rozważań – mszyce mają dwie interesujące cechy. Pierwszą jest, że dorosłe mszyce żyjące na trawach (ich „wtórnym” gospodarzu) pojawiają się w dwóch postaciach: płaskiej białawej (będę je nazywać „płaskie”) i bardziej zaokrąglonej oliwkowozielonej (będę je nazywał „okrągłe”). Te różnice wyraźnie nie są genetyczne: białe mszyce mogą mieć zielone potomstwo i odwrotnie, prawdopodobnie w zależności od warunków środowiskowych doświadczanych przez rodzica i potomstwo. (Proszę jednak zauważyć, że program pozwalający na taką zamianę jest niewątpliwie zakodowany w genach mszycy.)


Te dwie postaci robią różne rzeczy. Okrągła zielona mszyca jest mutualistą z mrówką: jest trofibiotyczna, co znaczy w tym wypadku, że mszyce, po wyssaniu soku rośliny wydzielają spadź, którą zjadają mrówki. W zamian mrówki dostarczają mszycom ochrony przed drapieżnikami. Jest to więc mutualizm, zachowanie pary gatunków, w którym oba czerpią korzyści ze związku (słynnym przykładem są porosty, które są mieszanką wzajemnie pomagających sobie glonów i grzybów).


Płaska mszyca chemicznie naśladuje larwy mrówek, mrówki zanoszą ją do mrowiska, gdzie wysysa hemolimfę („krew” owadów) z larw mrówek. (Nie jest jeszcze jasne, czy zabija larwy, czy też zmusza je do odrobiny krwiodawstwa, ale badacze znaleźli DNA mrówki w płaskich mszycach i widzieli, jak atakują larwy.) To uważane jest za mimikrę agresywną i można to uważać albo za pasożytnictwo, albo drapieżne żerowanie na mrówkach. A więc mszyce mają skomplikowaną mieszankę postaci uskrzydlonych i bezskrzydłych, rozmnażania płciowego i bezpłciowego, żyją albo na drzewach, albo w trawach i tworzą albo okrągłe postaci mutualistyczne, albo drapieżne białe. (Te różne postaci zwane są „morfami”.) Wykres poniżej pokazuje złożoność; dodałem także podpis z artykułu (nie spolszczony, MK). Możecie to wszystko zignorować poza postaciami okrągłymi i płaskimi po prawej stronie:


Fig. 1. Simplified diagram of the biannual life cycle of P. cimiciformis. Sexual reproduction takes place on P. terebinthus trees, its primary host, where up to five different morphs occur. Of these generations, three develop inside distinct galls that they induce in their host’s leaves. Toward the end of summer, the last generation born inside the galls consists of winged aphids that fly to the roots of several gramineous species, its secondary host. There, they initiate a succession of root-dwelling wingless parthenogenetic generations consisting of two morphs: the round (RM) and the flat (FM) morphs, respectively. These two morphs participate in mutualistic associations with ants of the genus Tetramorium. In summer, two winged morphs may appear. One disperses the clone to new grasses whereas, in regions where P. terebinthus is present, a second winged morph will fly back to the primary host to give birth to the sexual morphs. Afg, apterous fundatrigeniae; E, eggs; Fx, fundatrix; M, male; Sf, sexual female; Sxp, sexuparae; Wfg, winged fundatrigeniae; Wvg, winged virginoparae. The question mark denotes unclear phenology details during the root-dwelling phase (SI Text and Fig. S1).
Fig. 1. Simplified diagram of the biannual life cycle of P. cimiciformis. Sexual reproduction takes place on P. terebinthus trees, its primary host, where up to five different morphs occur. Of these generations, three develop inside distinct galls that they induce in their host’s leaves. Toward the end of summer, the last generation born inside the galls consists of winged aphids that fly to the roots of several gramineous species, its secondary host. There, they initiate a succession of root-dwelling wingless parthenogenetic generations consisting of two morphs: the round (RM) and the flat (FM) morphs, respectively. These two morphs participate in mutualistic associations with ants of the genus Tetramorium. In summer, two winged morphs may appear. One disperses the clone to new grasses whereas, in regions where P. terebinthus is present, a second winged morph will fly back to the primary host to give birth to the sexual morphs. Afg, apterous fundatrigeniae; E, eggs; Fx, fundatrix; M, male; Sf, sexual female; Sxp, sexuparae; Wfg, winged fundatrigeniae; Wvg, winged virginoparae. The question mark denotes unclear phenology details during the root-dwelling phase (SI Text and Fig. S1).

Poniżej jest zdjęcie mrówek i mszyc. Zdjęcie A pokazuje mrówki, które machają czułkami do zielonych, okrągłych mszyc, co jest dla mszyc sygnałem, że mają wydzielić spadź dla mrówek. Obserwacje pokazują, że mrówki machają tylko do okrągłych mszyc, po czym mrówki stukają czułkami w odwłok mszycy, kiedy ta wydziela spadź. Nigdy nie machają do płaskich mszyc, a tylko stukają w nie, które to zachowanie nazywa się „antenacja”.


Zdjęcie B pokazuje płaskie, białe mszyce w komorze lęgowej wśród larw mrówek (strzałki pokazują mszyce, które przypominają larwy). Zdjęcie C pokazuje białą mszycę zatapiającą żuwaczkę w larwie i gotową do wyssania hemolimfy. Zdjęcie D pokazuje larwę, z której wycieka limfa (bąbel) po zaatakowaniu jej:



Autorzy sprawdzali hipotezę, że płaskie mszyce mają w sobie coś poza wyglądem, co powoduje, że mrówki biorą je za swoje larwy (nie był to wygląd, bo mszyce płaskie i okrągłe są traktowane zupełnie inaczej także w kompletnej ciemności). Oczywistą hipotezą była „mimikra chemiczna”. Pokazali więc najpierw, używając chromatografii gazowej, że profil węglowodorowy płaskich mszyc jest bardziej podobny do larw mrówek niż mszyc okrągłych.


Praktycznie wszystkie owady mają warstwę węglowodorów na kutykuli; normalnie zapobiegają one wyschnięciu oraz funkcjonują jako sygnały chemiczne. Przez wiele lat pracowałem nad tym u Drosophila i pokazałem, że różne gatunki rozróżniają się wzajemnie, kiedy samce przed kopulacją „kosztują” – używając receptorów chemicznych na swoich przednich odnóżach – węglowodorów znajdujących się na samicach. Można zmienić to rozróżnianie przez przeniesienie węglowodorów od samic innego gatunku, a jak odkryłem, można to zrobić po prostu przez umieszczenie samicy jednego gatunku z mnóstwem samic innego gatunku. Ta samica otrzymuje wiele obcych węglowodorów przez ocieranie się o ciała innych, co wpływa na sposób zalecania się do niej samców.


Najpierw mamy tu profile węglowodorowe (odczyt z chromatografii gazowej) dwóch postaci mszyc i larwy mrówki. Analiza składu (kutykula zawiera wiele węglowodorów) pokazuje, że płaskie mszyce są bardziej podobne do larwy mrówki niż do okrągłej mszycy. Różnice między obydwiema postaciami mszycy nie wynikają po prostu z tego, że nabyła węglowodory od larw przez kontakt z nimi, bo istnieją one również, kiedy mszyce hodowane są w laboratorium bez żadnego kontaktu z mrówkami.



Następnie autorzy sprawdzili, czy różnica węglowodorów ma jakieś znaczenie dla zachowania mrówek. Ma. Ten eksperyment zrobiono przez nasycenie atrap mszyc ekstraktem z larwy mrówki, płaskiej mszycy i okrągłej mszycy oraz rozpuszczalnika heksanu stosowanego jako rozpuszczalnik węglowodorów (grupa kontrolna). Mrówki nie tylko stukały częściej w atrapy z ekstraktem larwy lub płaskiej mszycy niż w atrapy z ekstraktem okrągłej mszycy, ale machały czułkami wyłącznie do atrap z ekstraktem okrągłej mszycy. Ponadto zabierały do mrowiska tylko atrapy z ekstraktem mrówczej larwy lub płaskiej mszycy; nigdy się to nie zdarzyło z atrapą z grupy kontrolnej lub atrapą z ekstraktem z okrągłej mszycy  (Jest tam kilka problemów z istotnością statystyczną tych zachowań, więc wyniki są bardziej sugerujące, niż rozstrzygające.)


Profile chemiczne, jak również zachowanie mrówek, sugerują, że płaskie mszyce wyewoluowały do oszukiwania mrówek. Wydaje się to być stanem pochodnym, bo wszystkie pokrewne mszyce, jakie znamy, mają tylko postać mutualistyczną i okrągłą, wydzielającą spadź.


Wywołuje to kilka pytań. Poruszę tylko dwa. Po pierwsze, jak to wyewoluowało? Chociaż postaci płaska i okrągła są podobne genetycznie, a różnice między nimi kontrolowane są przez jakieś sygnały środowiskowe (jakie sygnały jest kolejnym pytaniem), program genetyczny, który powoduje, że mszyca jest albo okrągła, albo płaska, znajduje się w genomie mszycy; jest to program kierowany w jednym lub drugim kierunku przez sygnały środowiskowe. Program i czułe na środowisko przełączniki są z pewnością produktem doboru naturalnego. Jak jednak płaska postać wyewoluowała z okrągłej, choć obie współistnieją, jest zagadką; nie wiemy także zbyt dużo o innych aspektach ewolucji skomplikowanego cyklu życiowego mszyc. W tej mszycy jest wiele programów genetycznych (okrągłe kontra płaskie, seksualne kontra aseksualne, uskrzydlone kontra bezskrzydłe, mieszkające na drzewach kontra mieszkające na trawach) i o zawrót głowy przyprawia rozważanie, jak mogły wyewoluować. (Przypuszczam, że Discovery Institute użyje naszej niewiedzy, żeby zakrzyknąć: „Bóg to zaprojektował!”)


Po drugie, co utrzymuje obie postaci mszyc w jednej populacji? Jedną oczywistą odpowiedzią jest rodzaj „doboru zależnego od częstotliwości występowania”. To jest, chociaż różnice między mszycami płaskimi a okrągłymi oparte są na sygnałach środowiskowych, program genetyczny wyewoluował prawdopodobnie, by reagować na te sygnały w sposób adaptacyjny, dając różne postaci, kiedy są one najbardziej adaptacyjne. Jedną - moją - teorią jest to, że kiedy zaczyna być zbyt dużo płaskich mszyc, okrągłe mają przewagę, bo liczebność potomstwa mrówek będzie tak drastycznie zmniejszona, że kolonia może wymrzeć, zagrażając przetrwaniu wszystkich mszyc stowarzyszonych z danym mrowiskiem.


I odwrotnie, kiedy jest bardzo dużo okrągłych mszyc, korzystne może być unikanie konkurencji przez tworzenie postaci płaskich, które zajmują zupełnie inną niszę pokarmową.


Te korzyści zależą od stosunkowej częstości występowania tych dwóch postaci i dlatego nazywa się to doborem zależnym od częstości występowania. (Jest to dobór, który działa nie na programie genetycznym kodującym dwa różne wyglądy i zachowania, ale na programie genetycznym do ustalania, kiedy mszyce zmieniają się z jednej postaci w drugą.)


Wreszcie można też rozważać różnice strategii ewolucyjnej tych dwóch postaci, jedna mutualistyczna, a druga pasożytnicza. Tutaj jednak zacytuję po prostu słowa autorów:


Dwoista strategia mszyc P. cimiciformis przedstawia skomplikowany scenariusz ewolucyjny. Z jednej strony, okrągły morf i mrówki zaangażowane w stosunek trofibiotyczny powinny być przedmiotem konfliktu interesów typowego dla mutualizmu, z doborem popychającym każdego partnera do maksymalizowania własnych korzyści przez dawanie minimum własnej energii i zasobów. Z drugiej strony, płaski morf i mrówki mogą być zaangażowane w wyścig zbrojeń, z doborem faworyzującym coraz lepsze zdolności oszukiwania mrówek przez mszyce i coraz lepsze umiejętności wykrywania nienależących do kolonii członków przez mrówki.


Nawiasem mówiąc, jeśli zajrzycie na stronę tej pracy, możecie obejrzeć trzy dodatkowe filmy o zachowaniu mrówek/mszyc i o ich interakcjach, które nie pojawiają się w artykule.


________________

Salazar, A. et al. 2015.  Aggressive mimicry coexists with mutualism in an aphid. Proceedings of the National Academy of Sciences 112 1101-1106; published ahead of print January 12, 2015, doi:10.1073/pnas.1414061112

 

Chemical mimicry in an aphid

Why Evolution Is True, 28 stycznia 2015

Tłumaczenie: Małgorzata Koraszewska

 



Jerry A. Coyne

Profesor na wydziale ekologii i ewolucji University of Chicago, jego książka "Why Evolution is True" (Polskie wydanie: "Ewolucja jest faktem", Prószyński i Ska, 2009r.) została przełożona na kilkanaście języków, a przez Richarda Dawkinsa jest oceniana jako najlepsza książka o ewolucji.  Jerry Coyne jest jednym z najlepszych na świecie specjalistów od specjacji, rozdzielania się gatunków.  Jest wielkim miłośnikiem kotów i osobistym przyjacielem redaktor naczelnej.

Skomentuj Tipsa en vn Wydrukuj




Komentarze
1. Mrówkomirek Lengyel 2015-02-19


Nauka

Znalezionych 1474 artykuły.

Tytuł   Autor   Opublikowany

Kameleon przekazuje różne informacje różnymi częściami ciała   Yong   2013-12-14
Paradoksalne cechy genetyki inteligencji   Ridley   2013-12-18
Wielki skandal z biopaliwami   Lomborg   2013-12-19
Przedwczesna wiadomość o śmierci samolubnego genu   Coyne   2013-12-22
Czy jest życie na Europie?   Ridley   2013-12-22
Nowa data udomowienia kotów: około 5300 lat temu – i to w Chinach   Coyne   2013-12-26
Na Zeusa, natura jest przeżarta rują i korupcją   Koraszewski   2013-12-26
Proces cywilizacji   Ridley   2013-12-28
Jak karakara wygrywa z osami   Cobb   2013-12-29
Żebropławy, czyli dziwactwa ewolucji   Coyne   2013-12-30
Czy może istnieć sztuka bez artysty?    Wadhawan   2013-12-30
Zderzenie mentalności   Koraszewski   2014-01-01
Skrzydlaci oszuści i straż obywatelska   Young   2014-01-02
Delfiny umyślnie narkotyzują się truciznami rozdymków   Coyne   2014-01-04
Długi cień anglosfery   Ridley   2014-01-05
Ciemna materia genetyki psychiatrycznej   Zimmer   2014-01-06
Co czyni nas ludźmi?   Dawkins   2014-01-07
Twoja choroba na szalce   Yong   2014-01-08
Czy mamut włochaty potrzebuje adwokata?   Zimmer   2014-01-09
Pradawne rośliny kwitnące znalezione w bursztynie   Coyne   2014-01-10
Ratując gatunek możesz go niechcący skazać   Yong   2014-01-11
Ewolucja ukryta w pełnym świetle   Zimmer   2014-01-13
Koniec humanistyki?   Coyne   2014-01-15
Jak poruszasz nogą, która kiedyś była płetwą?   Yong   2014-01-16
Jak wyszliśmy na ląd, kość za kością   Zimmer   2014-01-19
Twoja wewnętrzna mucha   Cobb   2014-01-22
Ukwiał żyje w antarktycznym lodzie!   Coyne   2014-01-25
Dlaczego poligamia zanika?   Ridley   2014-01-26
Wspólne pochodzenie sygnałów płodności   Cobb   2014-01-28
Ewolucja i Bóg   Coyne   2014-01-29
O delfinach, dużych mózgach i skokach logiki   Yong   2014-01-30
Dziennikarski „statek upiorów” Greg Mayer   Mayer   2014-01-31
Dlaczego leniwce wypróżniają się na ziemi?   Bruce Lyon   2014-02-02
Moda na kopanie nauki   Coyne   2014-02-03
Neandertalczycy: bliscy obcy   Zimmer   2014-02-05
O pochodzeniu dobra i zła   Coyne   2014-02-05
Sposób znajdowania genów choroby   Yong   2014-02-07
Czy humaniści boją się nauki?   Coyne   2014-02-07
Kiedy zróżnicowały się współczesne ssaki łożyskowe?   Mayer   2014-02-10
O przyjaznej samolubności   Koraszewski   2014-02-12
Skąd wiesz, że znalazłeś je wszystkie?   Zimmer   2014-02-15
Nauka odkrywa nową niewiedzę o przeszłości   Ridley   2014-02-18
Żyjące gniazdo?   Zimmer   2014-02-19
Planeta tykwy pospolitej   Zimmer   2014-02-21
Nowe niezwykłe skamieniałości typu “Łupki z Burgess”   Coyne   2014-02-22
Dziennik z Mozambiku: Pardalota   Naskręcki   2014-02-23
Wskrzeszona odpowiedź z kredy na “chorobę królów”   Yong   2014-02-26
Dziennik z Mozambiku: Sybilla     2014-03-01
Spojrzeć ślepym okiem   Yong   2014-03-02
Intelektualne danie dnia  The Big Think   Coyne   2014-03-04
Przeczołgać się przez mózg i nie zgubić się   Zimmer   2014-03-05
Gdzie podziewają się żółwiki podczas zgubionych lat?   Yong   2014-03-10
Supergen, który maluje kłamcę   Yong   2014-03-14
Idea, którą pora oddać na złom   Koraszewski   2014-03-15
Zwycięstwa bez chwały   Ridley   2014-03-17
Twarde jak skała   Naskręcki   2014-03-18
Pasożyty informacyjne   Zimmer   2014-03-19
Seymour Benzer: humor, historia i genetyka   Cobb   2014-03-21
Kto to był Per Brinck?   Naskręcki   2014-03-23
Potrafimy rozróżnić między przynajmniej bilionem zapachów   Yong   2014-03-25
Godzina Ziemi czyli o celebrowaniu ciemności   Lomborg   2014-03-27
Słonie słyszą więcej niż ludzie   Yong   2014-03-30
Niebo gwiaździste nade mną, małpa włochata we mnie   Koraszewski   2014-03-31
Wielkoskrzydłe   Naskręcki   2014-04-02
Najstarsze żyjące organizmy   Coyne   2014-04-03
Jak zmienić bakterie jelitowe w dziennikarzy   Yong   2014-04-06
Eureka! Sprytne wrony to odkryły   Coyne   2014-04-07
Sukces upraw GM w Indiach   Lomborg   2014-04-09
Wirus, który sterylizuje owady, ale je pobudza   Yong   2014-04-12
Przystosować się do zmiany klimatu   Ridley   2014-04-14
Jeden oddech, który zmienił planetę   Naskręcki   2014-04-16
Najgorsze w karmieniu komarów jest czekanie   Yong   2014-04-17
Kłopotliwa podróż w przyszłość   Ridley   2014-04-19
Pierwsze spojrzenie na mikroby współczesnych łowców zbieraczy     2014-04-23
Seksizm w nauce o jaskiniowych owadach   Coyne   2014-04-26
Musza bakteria zaprasza inne muszki na uczty owocowe   Yong   2014-04-27
Zachwycający rabuś, który liczy sto milionów lat   Cobb   2014-04-28
Mądrość (małych) tłumów   Zimmer   2014-04-29
Tak bada się ewolucję inteligencji u zwierząt   Yong   2014-05-02
Fantastyczna mimikra tropikalnego pnącza   Coyne   2014-05-03
Dlaczego większość zasobównie wyczerpuje się   Ridley   2014-05-04
Pomidory tworzą pestycydy z zapachu swoich sąsiadów   Yong   2014-05-07
Potrawy z pasożytów   Zimmer   2014-05-08
Technologia jest często matką nauki, a nie odwrotnie   Ridley   2014-05-09
Montezuma i jego flirty   Coyne   2014-05-11
Insekt dziedziczy mikroby z plemnika taty   Yong   2014-05-12
Polowanie na nietoperze   Naskręcki   2014-05-14
Zmień swoje geny przez zmianę swojego życia   Coyne   2014-05-15
Obrona śmieciowego DNA   Zimmer   2014-05-17
Gdzie są badania zwierzęcych wagin?   Yong   2014-05-20
Niemal ssaki   Naskręcki   2014-05-21
Zobaczyć jak splątane są gałęzie drzewa   Zimmer   2014-05-23
Dlaczego ramiona ośmiornicy nie plączą się   Yong   2014-05-24
Niezwykły pasikonik szklany   Naskręcki   2014-05-27
Wąż zgubiony i ponownie odnaleziony   Mayer   2014-05-28
Niespodziewani krewni mamutaków   Yong   2014-05-30
Trochę lepszy  świat   Ridley   2014-05-31
Tam, gdzie są ptaki   Mayer   2014-06-01
Ewolucja, ptaki i kwiaty   Coyne   2014-06-02
Jestem spełniony   Naskręcki   2014-06-04

« Poprzednia strona  Następna strona »
Polecane
artykuły

Lekarze bez Granic


Wojna w Ukrainie


Krytycy Izraela


Walka z malarią


Przedwyborcza kampania


Nowy ateizm


Rzeczywiste łamanie


Jest lepiej


Aburd


Rasy - konstrukt


Zielone energie


Zmiana klimatu


Pogrzebać złudzenia Oslo


Kilka poważnych...


Przeciwko autentyczności


Nowy ateizm


Lomborg


„Choroba” przywrócona przez Putina


„Przebudzeni”


Pod sztandarem


Wielki przekret


Łamanie praw człowieka


Jason Hill


Dlaczego BIden


Korzenie kryzysu energetycznego



Obietnica



Pytanie bez odpowiedzi



Bohaterzy chińskiego narodu



Naukowcy Unii Europejskiej



Teoria Rasy



Przekupieni



Heretycki impuls



Nie klanial



Cervantes



Wojaki Chrystusa


Listy z naszego sadu
Redaktor naczelny:   Hili
Webmaster:   Andrzej Koraszewski
Współpracownicy:   Jacek, , Małgorzata, Andrzej, Henryk