Prawda

Piątek, 29 marca 2024 - 10:58

« Poprzedni Następny »


Genetyczny przełącznik CRISPR


Steven Novella 2021-04-16


Nadal szybko powiększa się nasza wiedza o genetyce i narzędziach do genetycznego konstruowania lub modyfikowania. Najgłośniejszym niedawnym postępem był CRISPR (clustered regularly interspaced short palindromic repeats - zgrupowane, regularnie rozproszone, krótkie, powtarzające się sekwencje palindromiczne), system, który powstał na podstawie bakterii i który z łatwością może wycelować w każdą sekwencję DNA używając do tego gRNA. CRISPR jest jak system strzelania do celu i można go połączyć z różnymi ładunkami, najczęściej z Cas9, który jest enzymem przecinającym obie nici DNA w pożądanym miejscu. Sam CRISPR odkryto w 1993 roku, ale system CRISPR-Cas9 użyto po raz pierwszy do edytowania genów w 2013 roku, co dało Nagrodę Nobla z chemii w 2020 roku.

Nadal jednak jesteśmy na stromej krzywej uczenia się o tej potężnej technologii i badacze właśnie poinformowali o, być może, największym postępie od 2013 roku – znaleźli sposób użycia CRISPR jako przełącznika on-off dla genów. To, co najmniej zrewolucjonizuje badania genetyczne. Ma jednak także niesłychany potencjał terapeutyczny, chociaż pozostają inne przeszkody do zastosowania tego do żywych organizmów.


Używanie CRISPR-Cas9 do edytowania genów ma zasadniczo dwie postaci: wstawianie genów i wyłączanie genów. Wyłączanie jest bez porównania łatwiejsze. CRISPR nacelowuje na gen, który ma zostać wyciszony lub wyłączony i Cas9 przecina obie nici DNA. Naturalny mechanizm naprawczy komórek o nazwie naprawa poprzez scalanie niehomologicznych końców DNA (NHEJ), łączy przecięte końce. Ten mechanizm naprawczy jest jednak bardzo nieprecyzyjny i często wprowadza błędy. Wiele z tych błędów powoduje przesunięcie się genetycznej sekwencji, skutecznie wyłączając gen. Ta zmiana jest trwała i będzie przenoszona do wszystkich późniejszych pokoleń.


Wstawianie genu jest trudniejsze. Nie tylko musisz przeciąć w pożądanym miejscu, ale musisz dostarczyć sekwencję genu, jaką chcesz wstawić i potrzebujesz innego mechanizmu naprawy DNA o nazwie homologiczna naprawa bezpośrednia (HDR), która jest bardziej precyzyjna i zachowuje genetyczną sekwencję, tak że gen pozostaje aktywny. NHEJ jest jednak znacznie powszechniejszy niż HDR, sztuką jest więc znalezienie sposobu na wzmocnienie naprawy HDR, żeby można było z powodzeniem wstawić nowy gen w miejsce naprawy.  


Ta nowa technika stosuje się tylko do wyłączania genów (nie do wstawiania) i w rzeczywistości w ogóle nie zmienia sekwencji DNA. Z tego powodu ta zmiana jest uważana za zmianę epigenetyczną. W tym wypadku CRISPR łączy się z innym ładunkiem, którym jest, jak mówi opublikowane badanie: “pojedyncze białko fuzyjne Cas9”, co razem nazwali CRISPRoff. Ten system celuje, jak zwykle, w konkretny gen, ale zamiast przecinać DNA, metyluje gen – dodaje grupy metylowe do niektórych par zasad. To zazwyczaj uniemożliwia  enzymowi transkryptazy pracę z DNA w tym miejscu, a więc gen nie może być transkrybowany i nie powstaje białko. Gen jest skutecznie wyłączony, mimo że sekwencja jest zachowana.


W pracy nad tą technologią badacze poczynili inne ciekawe odkrycia. Pierwszym jest to, że metylacja przechodzi przez kolejne pokolenia, jak długo ją badali. Przyglądali się pluripotentnym komórkom macierzystym i zamieniali je w neurony przez wyłączanie pewnych genów. Metylacja trwała w kolejnych pokoleniach powstałych z tego neuronów. To znaczy, że każde wyciszenie genu dokonane przez CRISPRoff jest “semi permanentne”.


Dokonali także bardzo zaskakującego odkrycia – poprzednio sądzono, że ten mechanizm metylacji będzie działał tylko na pewne geny, które zawierają kanoniczne wyspy CpG (CGI), a stanowią one około jednej trzeciej wszystkich genów. Technika CRISPRoff działała jednak na większość badanych genów, włącznie z tymi, którym brak CGI. To znaczy, że nasze poprzednie rozumienie metylacji było pod tym względem błędne i że CRISPRoff można używać na niemal wszystkich genach. Oba te zaskakujące odkrycia podniosły potencjał  CRISPRoff.


Ponadto badacze stworzyli CRISPRon, inny system, który usuwa metylację, włącza z powrotem gen bez żadnego uszkodzenia ani zmiany. Tak więc badacze mają teraz stosunkowo niedrogą i szybką metodę do odwracalnego włączania i wyłączania genów, którą można stosować do większości genów. Wyłączanie genu jest główną metodą, jakiej badacze używają do analizowania jego funkcji – wyłącz gen i zobacz, jakie skutki to ma na komórkę lub na badany układ. To z pewnością jest kolejnym czynnikiem wzmacniającym badania genetyczne, może równie wielkim, jak sam CRISPR. Badania genetyczne rozwijały się przez ostatnie pół wieku w postępie geometrycznym, a nie liniowym. Jest tak częściowo z powodu tego, że nasze zrozumienie genetyki ulepsza samą technologię badań genetycznych, a więc jest pozytywne sprzężenie zwrotne. CRISPRoff jest tego wspaniałym przykładem.


Ta metoda prawdopodobnie nie będzie używana do tworzenia GMO, którego celem jest zmiana DNA w trwały i stabilny sposób – by czynić zmiany genetyczne, a nie epigenetyczne. Mogę się jednak mylić. Niektóre GMO tworzy się tylko przez wyciszenie jednego lub więcej genów, a nie przez wstawianie nowych genów. Fakt, że te zmiany mogą nie być trwałe, może nawet być ciekawą metodą ochrony patentów.


A co z zastosowaniem terapeutycznym? CRISPRoff miałby tutaj niewiarygodny potencjał. Za każdym razem, kiedy wyłączenie genu w danej populacji komórek miałoby korzystne efekty, ta technologia mogłaby działać. Przykładem, jaki przedstawiono jak dotąd, jest choroba Alzheimera. Część postępowania tej choroby powoduje nabudowywanie się białka tau w neuronach. Gdyby dało się znacząco zmniejszyć ekspresję białka tau w komórkach mózgowych, mogłoby to spowolnić lub nawet zatrzymać chorobę.


Pozostaje jednak wielka trudność – jak docierać do żywych komórek w całym organizmie? Te techniki działają świetnie w hodowlach komórkowych w probówce, ale nie mamy jeszcze dobrego mechanizmu do dostarczania CRISPR do docelowej populacji komórek w żywym stworzeniu. To jest zbyt duży temat, by poruszać go dzisiaj, wystarczy więc powiedzieć, że jest kilka proponowanych metod, z których każda ma potencjał. Żadna jednak nie jest wspaniała. Mają problem z dotarciem do wystarczającej liczby komórek docelowych i z unikaniem wpływania na komórki, które nie są ich celem. Jak dotąd używanie CRISPR w celach terapeutycznych dotyczy wyjmowania komórek z ciała, zmieniania ich przy pomocy CRISPR, a następnie wkładanie ich z powrotem. To działa dla krwi lub szpiku kostnego, ale nie będzie działało dla mózgu. Niektóre tkanki mogą być łatwiejsze, takie jak siatkówka. Moglibyśmy, na przykład, wstrzyknąć CRISPR do płynu w oku, który jest w kontakcie z siatkówką. Inne narządy nie są jednak tak oddzielone i byłoby trudno wycelować w nie w ten sposób. Może dałoby się wycelować w mózg przez płyn rdzeniowy?


Sama technologia CRISPR rozwinęła się znacznie bardziej niż jej terapeutyczne zastosowania, częściowo dlatego, że badania na żywych ludziach są trudniejsze i dużo wolniejsze. Dopiero w przyszłości zobaczymy terapeutyczny potencjał CRISPR i może okazać się, że jest bardziej ograniczony  niż mieliśmy nadzieję.


Tak czy inaczej, CRISPRoff jest zdumiewającym osiągnięciem i co najmniej będzie potężnym narzędziem badawczym.

 

A CRISPR Genetic On-Off Switch

NeuroLogica Blog, 13 kwietnia 2021

Tłumaczenie: Małgorzata Koraszewska



Steven Novella 

Neurolog, wykładowca na Yale University School of Medicine. Przewodniczący i współzałożyciel New England Skeptical Society. Twórca popularnych (cotygodniowych) podkastów o nauce The Skeptics’ Guide to the Universe. Jest również dyrektorem Science-Based Medicine będącej częścią James Randi Educational Foundation (JREF), członek Committee for Skeptical Inquiry (CSI) oraz członek założyciel Institute for Science in Medicine. Prowadzi blog Neurologica.

Skomentuj Tipsa en vn Wydrukuj






Nauka

Znalezionych 1470 artykuły.

Tytuł   Autor   Opublikowany

Kameleon przekazuje różne informacje różnymi częściami ciała   Yong   2013-12-14
Paradoksalne cechy genetyki inteligencji   Ridley   2013-12-18
Wielki skandal z biopaliwami   Lomborg   2013-12-19
Przedwczesna wiadomość o śmierci samolubnego genu   Coyne   2013-12-22
Czy jest życie na Europie?   Ridley   2013-12-22
Nowa data udomowienia kotów: około 5300 lat temu – i to w Chinach   Coyne   2013-12-26
Na Zeusa, natura jest przeżarta rują i korupcją   Koraszewski   2013-12-26
Proces cywilizacji   Ridley   2013-12-28
Jak karakara wygrywa z osami   Cobb   2013-12-29
Żebropławy, czyli dziwactwa ewolucji   Coyne   2013-12-30
Czy może istnieć sztuka bez artysty?    Wadhawan   2013-12-30
Zderzenie mentalności   Koraszewski   2014-01-01
Skrzydlaci oszuści i straż obywatelska   Young   2014-01-02
Delfiny umyślnie narkotyzują się truciznami rozdymków   Coyne   2014-01-04
Długi cień anglosfery   Ridley   2014-01-05
Ciemna materia genetyki psychiatrycznej   Zimmer   2014-01-06
Co czyni nas ludźmi?   Dawkins   2014-01-07
Twoja choroba na szalce   Yong   2014-01-08
Czy mamut włochaty potrzebuje adwokata?   Zimmer   2014-01-09
Pradawne rośliny kwitnące znalezione w bursztynie   Coyne   2014-01-10
Ratując gatunek możesz go niechcący skazać   Yong   2014-01-11
Ewolucja ukryta w pełnym świetle   Zimmer   2014-01-13
Koniec humanistyki?   Coyne   2014-01-15
Jak poruszasz nogą, która kiedyś była płetwą?   Yong   2014-01-16
Jak wyszliśmy na ląd, kość za kością   Zimmer   2014-01-19
Twoja wewnętrzna mucha   Cobb   2014-01-22
Ukwiał żyje w antarktycznym lodzie!   Coyne   2014-01-25
Dlaczego poligamia zanika?   Ridley   2014-01-26
Wspólne pochodzenie sygnałów płodności   Cobb   2014-01-28
Ewolucja i Bóg   Coyne   2014-01-29
O delfinach, dużych mózgach i skokach logiki   Yong   2014-01-30
Dziennikarski „statek upiorów” Greg Mayer   Mayer   2014-01-31
Dlaczego leniwce wypróżniają się na ziemi?   Bruce Lyon   2014-02-02
Moda na kopanie nauki   Coyne   2014-02-03
Neandertalczycy: bliscy obcy   Zimmer   2014-02-05
O pochodzeniu dobra i zła   Coyne   2014-02-05
Sposób znajdowania genów choroby   Yong   2014-02-07
Czy humaniści boją się nauki?   Coyne   2014-02-07
Kiedy zróżnicowały się współczesne ssaki łożyskowe?   Mayer   2014-02-10
O przyjaznej samolubności   Koraszewski   2014-02-12
Skąd wiesz, że znalazłeś je wszystkie?   Zimmer   2014-02-15
Nauka odkrywa nową niewiedzę o przeszłości   Ridley   2014-02-18
Żyjące gniazdo?   Zimmer   2014-02-19
Planeta tykwy pospolitej   Zimmer   2014-02-21
Nowe niezwykłe skamieniałości typu “Łupki z Burgess”   Coyne   2014-02-22
Dziennik z Mozambiku: Pardalota   Naskręcki   2014-02-23
Wskrzeszona odpowiedź z kredy na “chorobę królów”   Yong   2014-02-26
Dziennik z Mozambiku: Sybilla     2014-03-01
Spojrzeć ślepym okiem   Yong   2014-03-02
Intelektualne danie dnia  The Big Think   Coyne   2014-03-04
Przeczołgać się przez mózg i nie zgubić się   Zimmer   2014-03-05
Gdzie podziewają się żółwiki podczas zgubionych lat?   Yong   2014-03-10
Supergen, który maluje kłamcę   Yong   2014-03-14
Idea, którą pora oddać na złom   Koraszewski   2014-03-15
Zwycięstwa bez chwały   Ridley   2014-03-17
Twarde jak skała   Naskręcki   2014-03-18
Pasożyty informacyjne   Zimmer   2014-03-19
Seymour Benzer: humor, historia i genetyka   Cobb   2014-03-21
Kto to był Per Brinck?   Naskręcki   2014-03-23
Potrafimy rozróżnić między przynajmniej bilionem zapachów   Yong   2014-03-25
Godzina Ziemi czyli o celebrowaniu ciemności   Lomborg   2014-03-27
Słonie słyszą więcej niż ludzie   Yong   2014-03-30
Niebo gwiaździste nade mną, małpa włochata we mnie   Koraszewski   2014-03-31
Wielkoskrzydłe   Naskręcki   2014-04-02
Najstarsze żyjące organizmy   Coyne   2014-04-03
Jak zmienić bakterie jelitowe w dziennikarzy   Yong   2014-04-06
Eureka! Sprytne wrony to odkryły   Coyne   2014-04-07
Sukces upraw GM w Indiach   Lomborg   2014-04-09
Wirus, który sterylizuje owady, ale je pobudza   Yong   2014-04-12
Przystosować się do zmiany klimatu   Ridley   2014-04-14
Jeden oddech, który zmienił planetę   Naskręcki   2014-04-16
Najgorsze w karmieniu komarów jest czekanie   Yong   2014-04-17
Kłopotliwa podróż w przyszłość   Ridley   2014-04-19
Pierwsze spojrzenie na mikroby współczesnych łowców zbieraczy     2014-04-23
Seksizm w nauce o jaskiniowych owadach   Coyne   2014-04-26
Musza bakteria zaprasza inne muszki na uczty owocowe   Yong   2014-04-27
Zachwycający rabuś, który liczy sto milionów lat   Cobb   2014-04-28
Mądrość (małych) tłumów   Zimmer   2014-04-29
Tak bada się ewolucję inteligencji u zwierząt   Yong   2014-05-02
Fantastyczna mimikra tropikalnego pnącza   Coyne   2014-05-03
Dlaczego większość zasobównie wyczerpuje się   Ridley   2014-05-04
Pomidory tworzą pestycydy z zapachu swoich sąsiadów   Yong   2014-05-07
Potrawy z pasożytów   Zimmer   2014-05-08
Technologia jest często matką nauki, a nie odwrotnie   Ridley   2014-05-09
Montezuma i jego flirty   Coyne   2014-05-11
Insekt dziedziczy mikroby z plemnika taty   Yong   2014-05-12
Polowanie na nietoperze   Naskręcki   2014-05-14
Zmień swoje geny przez zmianę swojego życia   Coyne   2014-05-15
Obrona śmieciowego DNA   Zimmer   2014-05-17
Gdzie są badania zwierzęcych wagin?   Yong   2014-05-20
Niemal ssaki   Naskręcki   2014-05-21
Zobaczyć jak splątane są gałęzie drzewa   Zimmer   2014-05-23
Dlaczego ramiona ośmiornicy nie plączą się   Yong   2014-05-24
Niezwykły pasikonik szklany   Naskręcki   2014-05-27
Wąż zgubiony i ponownie odnaleziony   Mayer   2014-05-28
Niespodziewani krewni mamutaków   Yong   2014-05-30
Trochę lepszy  świat   Ridley   2014-05-31
Tam, gdzie są ptaki   Mayer   2014-06-01
Ewolucja, ptaki i kwiaty   Coyne   2014-06-02
Jestem spełniony   Naskręcki   2014-06-04

« Poprzednia strona  Następna strona »
Polecane
artykuły

Lekarze bez Granic


Wojna w Ukrainie


Krytycy Izraela


Walka z malarią


Przedwyborcza kampania


Nowy ateizm


Rzeczywiste łamanie


Jest lepiej


Aburd


Rasy - konstrukt


Zielone energie


Zmiana klimatu


Pogrzebać złudzenia Oslo


Kilka poważnych...


Przeciwko autentyczności


Nowy ateizm


Lomborg


„Choroba” przywrócona przez Putina


„Przebudzeni”


Pod sztandarem


Wielki przekret


Łamanie praw człowieka


Jason Hill


Dlaczego BIden


Korzenie kryzysu energetycznego



Obietnica



Pytanie bez odpowiedzi



Bohaterzy chińskiego narodu



Naukowcy Unii Europejskiej



Teoria Rasy



Przekupieni



Heretycki impuls



Nie klanial



Cervantes



Wojaki Chrystusa


Listy z naszego sadu
Redaktor naczelny:   Hili
Webmaster:   Andrzej Koraszewski
Współpracownicy:   Jacek, , Małgorzata, Andrzej, Henryk