Rozrzedzanie krwi bez groźby krwawienia

Wiele jest “świętych Graali” w medycynie (jak też w każdej innej dziedzinie) – dążenia do zdobycia terapii lub lekarstwa, które ma optymalne właściwości. Są one często nieuchwytne lub bardzo trudno osiągalne z kilku powodów. Pierwszy: technologia często wymaga zestawu równocześnie występujących cech, żeby była użyteczna. Brak którejkolwiek z nich potencjalnie przekreśla sens całego przedsięwzięcia. Drugi: pożądane cechy mogą się wzajemnie wykluczać lub co najmniej niezmiernie trudno je pogodzić. Jednym takim świętym Graalem, ku któremu zrobiliśmy w medycynie wielki krok, jest terapia, która rozrzedza krew, by zredukować ryzyko nienormalnego tworzenia się zakrzepów krwi (zakrzepica) bez naruszenia normalnego krzepnięcia krwi i spowodowania ryzyka krwawienia.

Niedawny artykuł w “Nature Communications” opowiada o wstępnym badaniu takiej właśnie terapii, chociaż nie jest ona jeszcze w pełni gotowa.


Rozrzedzanie krwi jest użyteczne z wielu powodów. Zakrzepy mogą powodować wiele udarów i zawałów, które należą do największych zabójców. Mogą także tworzyć się na sztucznych implantach, takich jak mechaniczne zastawki w sercu i sztuczne płuca (tymczasowe, dla pacjentów oczekujących na przeszczep płuc). Właściwie każda sztuczna powierzchnia, która wchodzi w kontakt z krwią w organizmie, może służyć jako wyzwalacz dla zakrzepów.


Oczywiście jednak, potrzebujemy krzepnięcia krwi, bo inaczej wykrwawilibyśmy się. Dlatego leczenie, które hamuje krzepnięcie krwi, żeby zredukować ryzyko udaru lub zawału, zawsze było tańcem na linie – trzeba rozrzedzić krew tylko na tyle, by zredukować ryzyko zakrzepu, ale zminimalizować rosnące ryzyko krwawienia. Zawsze jednak masz jedno z drugim i optymalne leczenie jest kwestią znalezienia optymalnego kompromisu. Gdybyśmy potrafili zredukować ryzyko zakrzepicy bez podnoszenia ryzyka krwawienia, byłby to ideał. Wydaje się jednak, że te dwie rzeczy idą ręka w rękę, jak więc jest to możliwe choćby w teorii?


Na szczęście, system krzepnięcia krwi jest skrajnie złożony. To utrudnia badanie i zrozumienie, ale badacze przez dziesięciolecia rozgryźli wiele z tego systemu u kręgowców. Złożoność oznacza, że teoretycznie jest możliwe zahamowanie jednego aspektu systemu, by zapobiec tworzeniu się zakrzepów, kiedy nie są one pożądane, zachowując przy tym zdolność hamowania krwawienia. Badacze sądzą, że znaleźli właśnie coś takiego – nazwanego czynnikiem krzepliwości XII (FXII – lub czynnikiem Hagemana). Odkryto go już w 1955 roku, kiedy podczas rutynowych badań przedoperacyjnych mężczyzny o nazwisku Hageman odkryto, że ma zwiększony czas krzepliwości, mimo że nie miał żadnych krwawień ani chorób. Chciałbym raz jeszcze podkreślić, jak często potrzeba bardzo długiego czasu od podstawowego odkrycia naukowego do medycznego zastosowania – w tym wypadku 65 lat (a jeszcze nie dotarliśmy do mety).


W bliższych naszym czasom badaniach znaleziono gen na FXII, a potem potwierdzono tę właściwość przez unieczynnianie FXII u zwierząt. Podniosło to czas krzepnięcia, ale nie podniosło ryzyka krwawienia. Spowodowało to wyścig do znalezienia leku, który hamowałby FXII i działał tym samym jako bezpieczny rozrzedzacz krwi. To doprowadza nas do obecnego badania. Badacze przedstawiają odkrycie syntetycznego inhibitora FXII, nazwanego przez nich FXII900:

Odkryliśmy, że redukuje eksperymentalną, wywołaną przez chlorek żelaza zakrzepicę u myszy i osłabia krzepliwość krwi w pozaustrojowym utlenowaniu krwi (ECMO) u królików, a wszystko to bez podnoszenia ryzyka krwawienia. Pokazuje to, że działalność FXIIa daje się kontrolować in vivo syntetycznym inhibitorem i że inhibitor FXII900 jest obiecującym kandydatem na bezpieczną ochronę przed zakrzepami przy ostrych stanach chorobowych.

Zasadniczo przyglądali się działaniu leku w trzech gatunkach w dwóch sytuacjach: wywołanej lekami zakrzepicy i przy podłączeniu do sztucznych płuc (pozaustrojowe utlenowanie krwi). Inhibitor działał tak, jak mieli nadzieję – redukował zakrzepy bez podnoszenia ryzyka krwawienia. Znalezienie tego peptydu nie było łatwym zadaniem, jak wyjaśniają badacze:

“Inhibitor FXII jest odmianą cyklicznego peptydu, który zidentyfikowaliśmy w puli ponad miliarda różnych peptydów przy użyciu techniki o nazwie prezentacja fagowa”- mówi Heinis. Badacze ulepszyli następnie inhibitor przez staranne zastępowanie kilku z jego naturalnych aminokwasów syntetycznymi. „To nie było szybkie zadanie; ukończenie tego zabrało ponad sześć lat i dwa pokolenia doktorantów i badaczy po doktoracie”.

Możecie pamiętać prezentację fagową z Nagrody Nobla z chemii w 2018 roku. To jest technika genetycznie manipulowanych bakteriofagów, by pokazywały na powierzchni przeciwciała lub białka, które następnie można badać. Używając tej techniki badacze przetestowali ponad miliard peptydów. Już to jest zdumiewające.  


Tak więc - jeśli FXII900 działa tak dobrze, dlaczego nie jesteśmy jeszcze u mety? Pamiętacie, że powiedziałem, iż wiele technologii potrzebuje zestawu różnych właściwości równocześnie i leki są tego klasycznym przykładem. Leki muszą dostać się do organizmu i pójść tam, gdzie są potrzebne (biodostępność), muszą być stabilne i nie mogą powodować szkód przy terapeutycznych dawkach. Miło byłoby także, gdyby nie kolidowały zanadto z innymi lekami. FXII900 ma wiele z tych właściwości (przynajmniej, jak dotąd), ale jedną krytyczną wadę – jest to mały peptyd, który nerki szybko usuwają. W próbach ze zwierzętami lek był usuwany w czasie od zaledwie 12 minut do aż 30 minut.


Autorzy informują (i to może wprowadzać zamieszanie w komunikacie prasowym), że okres połowicznego zaniku w plazmie wynosi 120 godzin, co jest dobre. Dotyczy to jednak tylko leku siedzącego w plazmie in vitro. Nie dotyczy farmakokinetyki – czyli tego co organizm robi z lekiem. W żywym organizmie nerki skutecznie odfiltrowują lek. Jest to potencjalnie zabójcze dla wielu zastosowań. Lek nie będzie użyteczny w większości kontekstów, jeśli jest tak szybko usuwany. Co najwyżej może być używany jako ciągła kroplówka przez krótki czas. W szpitalach w nagłych wypadkach jest dla tego zastosowanie – ktoś właśnie doznał udaru i zakrzepy potencjalnie nadal zagrażają, ale nie chcemy, by krwawił.


Poza jednak nagłymi wypadkami w szpitalu (nie chcę tego minimalizować – bo to może być niesłychanie skuteczne i korzystne), taki krótki czas trwania powoduje, że lek nie jest użyteczny. Badacze uważają (jak zwykle), że ten problem da się rozwiązać. Następnym krokiem jest więc stworzenie odmian cząsteczki, by znaleźć taką, która działa równie dobrze, ale nerkom nie tak łatwo jest ją usunąć. W tym dobre są firmy farmaceutyczne – majsterkowanie przy lekach, by uzyskać kombinację cech niezbędną do tego, by produkt dało się wprowadzić na rynek.


Nadal jesteśmy daleko od zobaczenia FXII900 w użytku i prawdopodobnie będzie to jakaś jego pochodna. Same próby kliniczne, by dowieść bezpieczeństwa i skuteczności dla ludzi, zajmą lata. Jeśli doprowadzenie do produktu potrwa jeszcze 10 lat (co jest rozsądnym oszacowaniem), to upłynie 75 lat od pierwszej, szczęśliwej obserwacji w 1955 roku do leku leczącego pacjentów. Po drodze było wiele kroków i wiele odkryć, bazujących na postępach w innych dziedzinach, takich jak genetyka i mikrobiologia. W tym jednym leku jest wiele z historii nowoczesnej medycyny. A jeśli końcowym rezultatem będzie lek do rozrzedzania krwi, który nie podnosi ryzyka krwawienia, te 75 lat badań będą warte każdej godziny spędzonej nad nim w laboratoriach.  

 

Blood Thinning Without Bleeding

NeuroLogica Blog, 4 sierpnia 2020

Tłumaczenie: Małgorzata Koraszewska

Steven Novella 

Neurolog, wykładowca na Yale University School of Medicine. Przewodniczący i współzałożyciel New England Skeptical Society. Twórca popularnych (cotygodniowych) podkastów o nauce The Skeptics’ Guide to the Universe. Jest również dyrektorem Science-Based Medicine będącej częścią James Randi Educational Foundation (JREF), członek Committee for Skeptical Inquiry (CSI) oraz członek założyciel Institute for Science in Medicine. Prowadzi blog Neurologica.
(0)
Listy z naszego sadu
Chief editor: Hili
Webmaster:: Andrzej Koraszewski
Collaborators: Jacek Chudziński, Hili, Małgorzata Koraszewska, Andrzej Koraszewski, Henryk Rubinstein
Go to web version